Mathematical modelling of construction of ship turning trajectory using autonomous bow thruster work and research of bow thruster control specifics
DOI:
https://doi.org/10.26408/118.01Keywords:
accuracy of trajectory, Kalman filter, step course change, sector step, bow thruster shoulderAbstract
The article proposes a method of constructing the trajectory of a ship’s turn using a control device. Mathematical modelling of the turn trajectory is performed using MS Excel in conjunction with the MATLAB environment. To construct a trajectory, a conditional centre of turn will be used, it will be guided by a control device, such as a radio buoy, or a lighthouse with pre-known coordinates. The construction of this trajectory has two features: a step course change when rotated equal to a sector step, and the accuracy of the trajectory is achieved by using the Kalman filter, simplified to the amplification factor. The bow thruster moment is calculating using the bow thruster shoulder. The angular velocity of turning depends on the linear speed, therefore, the angular velocity can be adjusted not only by changing the bow thruster mode of operation, but also by changing the linear speed of the vessel. The article provides the program code for constructing a trajectory in the MATLAB environment, which takes its initial data from MS Excel. Therefore, the work forms the basic view of autonomous bow thruster control.References
Botniev, W.A., Ustinov, S.M., 2014, Mietody reszenija priamoj i obratnoj geodeziczeskich zadacz s wysokoj tocznostiu, Naucznotiechniczeskije Wiedomosti SPbGPU 3'(198), Informatika. Tielekommunikacii. Uprawlenije//Matiematiczeskoje modielirowanije: mietody, algoritmy, tiechnologii, pp. 49–58.
2. Cadet, O., 2003, Introduction to Kalman Filter – Application to DP, Dynamic Positioning Conference, September 16–17, pp. 1–33.
3. IMO, 2018, Framework for the Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS), MSC 100/20/Add.1, Annex 2.
4. Interim Guidelines for Mass Trials, 2019, MSC.1/Circ.1604, June 14.
5. Judin, J.I., 2010, Маtiematiczeskoje modelirowanije raboty podruliwajuszczego ustrojstwa burowogo sudna, Viestnik MGTU, vol. 13, no. 4/2, pp. 839–844.
6. Kopczyński, A.M., 2015, Analiza i projektowanie układów sterowania sterami strumieniowymi statków z zastosowaniem systemu z bazą wiedzy, Autoreferat rozprawy doktorskiej, Gdańsk.
7. Kupraty, O., 2020, Implementation of the Algorithm for Calculation Course (Bearing) on Rhumb Line and Constructing the Trajectory of the Ship's Turning Circle in the MATLAB Programming Environment, The Scientific Heritage, Budapest, vol. 1, no. 60(60), pp. 40–45.
8. Маszarov, K.W., 2011, Primienienije filtra Kalmana dla ocenki koordinat celi w RLS, Viestnik SibGUTI, no 3, pp. 59–66.
9. Morgaś, W., Kopacz, Z., 2013, Rhumb-Line Sailing by Compution, Versita, Reports on Geodesy, vol. 94, pp. 14–26.
10. Wieriemiej, E.I., 2016, Sriedniekwadraticznaja mnogocielewaja optimizacija: uczeb. posobije, SPb, St. Petersburg.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright to their work, licensing it under the Creative Commons Attribution License Attribution 4.0 International licence (CC BY 4.0) which allows articles to be re-used and re-distributed without restriction, as long as the original work is correctly cited. The author retains unlimited copyright and publishing rights.