Evaluation of the Process of Condensation of Water Vapour in the Presence of Deposits Using a Single Pipe in the Heat Exchanger of a Condensing Power Plant as an Example

Authors

DOI:

https://doi.org/10.26408/128.05

Keywords:

steam power plants, heat exchangers, deposits of heat transfer surfaces, steam condensation

Abstract

Additional thermal resistance caused by deposits accumulating on the heat exchange surfaces of condensers and in the regenerative exchangers of steam power plants most often results in a deterioration in the heat exchange process, which manifests itself, amongt other things, in a reduction in the thermal power of a given heat exchange device and an increase in the working pressure on the steam side. Moreover, such deposits sometimes form irregularities with a diverse geometric structure, hence the description of the water vapour condensation process is not always easy to interpret due to the coexistence of many phenomena at the same time. The article describes selected theoretical issues regarding the presence of deposits on heat exchange surfaces and presents the results of the author’s own experimental research on heat transfer in the process of condensing water vapour on an example of a single pipe with deposits taken from the heat exchanger of a steam condensing power plant.

References

Adamczak, S., 2005, Normalizacja pomiarów struktury geometrycznej powierzchni Cz. 7. Ocena chropowatości i falistości powierzchni. Informacje podstawowe, Mechanik, no. 5–6, pp. 492–495.

Adamson, W.L., 1981, The Impact of Fouling on Condenser Design and Operation, [in:] Marto, P.J. (ed.), Power Condenser Heat Transfer Technology, Publishing Co.

Bonca, Z., Butrymowicz, D., 1994, Eksperymentalne badania wymiany ciepła w procesie skraplania freonu R22 na rurach gęstożebrowanych, Prace Instytutu Maszyn Przepływowych, Wydawnictwo Instytutu Maszyn Przepływowych PAN, Gdańsk, vol. 97, no. 1–2, pp. 29–61.

Brahim, F., Augustin, W., Bohnet, M., 2003, Numerical Simulation of the Fouling Structured Heat Transfer Surfaces, ECI Conference on Heat Exchanger Fouling and Cleaning, Fundamentals and Applications, pp. 121–129.

Brodowicz, K., Markowski, M., 1995, Metoda projektowania wymienników ciepła o małej wrażliwości na opory cieplne osadów, IX Sympozjum Wymiany Ciepła i Masy, Augustów, pp. 177–186.

Butrymowicz, D., 2001, Influence of Fouling and Inert Gases on the Performance of Regenerative Feedwater Heaters, Archives of Thermodynamics, vol. 23, no. 1–2, pp. 127–140.

Butrymowicz, D., Gardzilewicz, A., 1996, Analiza możliwości pomiaru oporu cieplnego zanieczyszczeń powierzchni wymienników ciepła, Wydawnictwo Instytutu Maszyn Przepływowych PAN, Gdańsk.

Butrymowicz, D., Hajduk, T., 2006, Zagadnienia degradacji termicznej wymienników ciepła, Technika Chłodnicza i Klimatyzacyjna, R. XIII, no. 3(121), pp. 111–117.

Dobosiewicz, J., 1996, Korozja mosiężnych rurek skraplaczy od strony pary wodnej, Biuletyn Pro Novum, Energetyka, vol. L, no. 5(503), pp. 300(17)–301(18).

Epstein, N., 1999, Particle Deposition and Its Mitigation, [in:] Bott, T.R. (ed.), Understanding Heat Exchanger Fouling and Its Mitigation, Begell House, Inc., New York, USA, pp. 3–21.

Förster, M., Bohnet, M., 2002, Modification of the Interface Crystal/Heat Transfer Surface to Reduce Heat Exchanger Fouling, [in:] Müller-Steinhagen, H. (ed.), Heat Exchanger Fouling. Fundamental Approaches & Technical Solutions, Publico Publications, Essen, Germany.

Górski, Z., Perepeczko, A., 2013, Okrętowe kotły parowe, Wydawnictwo Akademii Morskiej w Gdyni, Gdynia.

Hajduk, T., 2018, Research on Deposit Accumulated on Heat Exchange Surfaces in the Light of Thermal Degradation of Heat Exchange Aparatus of Steam Power Plants, Part I: Study of Real Sediments, Polish Maritime Research, vol. 25, no. 1(97), pp. 99–107.

Hajduk, T., Karwacki, J., Butrymowicz, D., Szyrszyng, R., 2006, Modyfikacja układu przepływowego stanowiska do badań oporów cieplnych zanieczyszczeń, Instytut Maszyn Przepływowych PAN, no. 6774, Gdańsk.

Hobler, T., 1986, Ruch ciepła i wymienniki, WNT, Warszawa.

Karabelas, A.J., 2001, Scale Formation in Tubular Heat Exchangers – Research Priorites, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, pp. 73–81.

Kazi, S.N., Duffy, G.G., Chen, X.D., 2002, A Study of Fouling and Fouling Mitigation on Smooth and Roughened Metal Surfaces and a Polymeric Material, [in:] Müller-Steinhagen, H. (ed.), Heat Exchanger Fouling. Fundamental Approaches & Technical Solutions, PP Publico Publications, Essen, Germany, pp. 65–72.

Knudsen, J.G., 1981, Fouling of Heat Transfer Surfaces: An Overview, [in:] Marto, P.J., Nunn, R.H., (eds.), Power Condenser Heat Transfer Technology, Hemisphere Publishing Co., pp. 375–424.

Kotlewski, F., Mieszkowski, M., 1972, Pomiary w technice cieplnej, WNT, Warszawa.

Kukulka, D.J., Devgun, M., 2007, Fouling Surface Finish Evaluation, Applied Thermal Engineering, vol. 27, pp. 1165–1172.

Michiejew, M., 1953, Zasady wymiany ciepła, PWN, Warszawa.

NIST Reference Fluid Thermodynamic and Transport Properties – Refprop, version 8.0, National Institute of Standards and Technology, USA.

Rusowicz, A., 2004, Analiza powstających osadów w rurach skraplacza energetycznego, XII Sympo-zjum Wymiany Ciepła i Masy, Kraków, pp. 753–761.

Wajs, J., Mikielewicz, D., 2014, Effect of Surface Roughness on Thermal-Hydraulic Characteristics of Plate Heat Exchangers, Key Engineering Materials, vol. 597, pp. 63–74.

Webb, R.L., 1981, The Use of Enhanced Surface Geometries in Condensers: An Overview, [in:] Marto, P.J., Nunn, R.H., (eds.), Power Condenser Heat Transfer Technology, Hemisphere Publishing Co., pp. 287–324.

Downloads

Published

2023-12-29

How to Cite

Hajduk, T. (2023). Evaluation of the Process of Condensation of Water Vapour in the Presence of Deposits Using a Single Pipe in the Heat Exchanger of a Condensing Power Plant as an Example. Scientific Journal of Gdynia Maritime University, (128), 77–92. https://doi.org/10.26408/128.05

Issue

Section

Articles

Categories