Usefulness Study of Rosenstein and Eckmann Procedures for Identification of Chaotic Time Series
DOI:
https://doi.org/10.26408/103.09Keywords:
chaos, time series, Lyapunov exponentAbstract
This paper presents the results of simulation tests using the Eckmann and Rosenstein procedures for calculating Lyapunov exponents based on a time series. For verifying and evaluating the suitability of these procedures as a reference time series, points generated by logistic mapping for which the trajectory of Lyapunov's coefficients is known was applied.References
Baker, G.L., Gollub, J.P., 1998, Wstęp do dynamiki układów chaotycznych, Wydawnictwo Naukowe PWN, Warszawa.
[2] Eckmann, J.P., Kamphorst, S.O., Ruelle, D., Ciliberto, S., 1986, Liapunov exponents from time series, Physical Review A, vol. 34, no. 6, s. 4971–4979.
[3] Kantz, H., 1994, A Robust Method to Estimate the Maximal Lyapunov Exponent of a Time Series, Physical Letters A, vol. 185(1), s. 77–87.
[4] Kantz, H., Schreiber, T., 2004, Nonlinear Time Series Analysis, Cambridge University Press, Cambridge.
[5] Kennel, M.B., Brown, R., Abarbanel, H.D.I., 1992, Detecting Embedding Dimension for Phase Space Reconstruction Using a Geometrical Construction, Physical Review A, vol. 45.
[6] Largest Lyapunov Exponent with Rosenstein’s Algorithm, http://www.mathworks.com/matlabcentral/ fileexchange/38424-largest-lyapunov-exponent-with-rosenstein-s-algorithm.
[7] Packard, N.H., Crutchfield, J.P, Farmer, J.D, Shaw R.S., 1980, Geometry from a time series, Physical Review letters, vol. 45, no. 9, s. 712–716.
[8] Peitgen, H., Jürgens, H., Saupe, D., 1996, Granice chaosu. Fraktale, Wydawnictwo Naukowe PWN, Warszawa.
[9] Peters, E.E., 1997, Teoria chaosu a rynki kapitałowe, WiG_Press, Warszawa.
[10] Rosenstein, T., Collins, J.J., De Luca, C.J., 1993, A practical method for calculating largest Lyapunov exponents from small data sets, Physica D: Nonlinear Phenomena, vol. 65, no. 1, s. 117–134.
[11] Schuster, H.G., 1995, Chaos deterministyczny, Wydawnictwo Naukowe PWN, Warszawa.
[12] Shapour, M., 2017, LYAPROSEN: MATLAB function to calculate Lyapunov exponent, https://ideas.repec.org/c/boc/bocode/t741502.html.
[13] Wolf, A., Swift, J., Swinney, H., Vastano, J., 1985, Determining Lyapunov Exponents from a Time Series, Physica D, vol. 16, s. 285–317.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright to their work, licensing it under the Creative Commons Attribution License Attribution 4.0 International licence (CC BY 4.0) which allows articles to be re-used and re-distributed without restriction, as long as the original work is correctly cited. The author retains unlimited copyright and publishing rights.