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Abstract: The focus of this work is the determination of the optimal path for a mobile agent to 
take in an environment with static obstacles, using reinforcement learning (RL). The paper 
explains the work examining different RL algorithms, such as Q-learning and Sarsa in the 
classic version and enhanced with the Adam gradient optimiser. The work investigates the 
impact of the Adam gradient optimiser on the rate and stability of finding the optimal solution. 
The analysis includes a comparison of the learning rate, the number of steps in a single 
episode and the stability of the learning process. The results reveal that the considered  
Q-learning and Sarsa algorithms supplemented with the Adam optimiser achieve a higher 
performance, characterised by a faster determination of the optimal transition path, than the 
same algorithms without the Adam gradient optimiser. The results could be particularly useful 
in practical applications for routing transitions in fields like mobile robotics. 
Keywords: Artificial Intelligence, reinforcement learning, Q-learning, Sarsa, Adam optimizer. 

1.  INTRODUCTION 

Reinforcement learning (RL) is one of the key issues in machine learning, enabling 
a computational agent to make autonomous decisions based on interactions with  
a dynamic environment. For a comprehensive discussion of RL, see Sutton and Barto 
[2018]. 
 RLs find applications in solving different types of problems, most commonly 
for optimising the path of transition in navigation systems for mobile agents, as well 
as for mobile agent control [Cao et al. 2024]. Planning a transition path for an agent 
in an environment with static obstacles is a significant problem which requires an 
effective approach. Traditional path planning methods developed over the years, 
such as Dijkstra’s algorithm or A*, are insufficient as they lack flexibility when 
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encountering different changing environmental conditions and dynamically 
emerging obstacles [Tang and Ma 2021]. 
 More recently, solutions have been emerging in which  RL is used to determine 
the optimal transition paths, which allows the agent to autonomously adapt its 
movement strategy by learning optimal decisions in real time and in an unfamiliar 
environment [Adhirai and Kumar 2022]. For example, Abdalmanan et al. [2023] 
used reinforcement learning methods to determine a path of transition for a mobile 
agent in an unknown environment, based on a 2D LiDAR sensor. In this case, 
successful experiments were conducted to train the agent to reach a single destination 
and multiple destinations. 
 In autonomous robotics, an important issue is the navigation of mobile robots 
in unfamiliar environments in the presence of static obstacles and dynamic obstacles. 
The following papers have been written on this topic: [Viet, Kyaw and Chung 2011; 
Konar et al. 2013; Alhawary 2018; Sichkar 2019; Garaffa et al. 2021; Lee and Jeong 
2021; Sachin et al. 2022; Song and Li 2023]. These algorithms are based on a raster 
grid, which is used to discretise the solution search space. 
 In this work, two selected RL algorithms, known as Q-learning and Sarsa, were 
investigated in their classical version and after being modified by using stochastic 
gradient optimisation, known as Adam [Kingma and Ba 2014]. 

2.  REINFORCEMENT LEARNING (RL) 

RL is an approach that enables an agent to make autonomous decisions in a changing 
environment, based on interactions with the environment and a reward system.  
A key aspect of RL is that the agent learns good behaviour, which, in the context of 
optimising the agent’s path, allows it to find the optimal path for a transition that 
allows the agent to avoid obstacles and minimise the length of the path taken. 

The basic RL elements are the computational agent and the environment,  
as shown in Figure 1. The task carried out in RL is to determine the agent’s policy, 
denoted as π(at|st). The agent, based of the received state value st , takes action at. 
The sequence of states, actions, and rewards are s0, a0, r1, s1, a1, r2, s2,… etc. until  
aT-1, rT, sT is a trajectory, denoted τ. The authors assumed that the control problem 
has a finite horizon which means that the decision-making task lasts for a fixed 
number of time steps, T, and ends with the last step. 
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Fig. 1. The interaction of the agent AND the environment in RL 

2.1.  Markov property 

For simplicity of consideration, RL was assumed to be modelled as a Markovian 
decision process. This allowed the application of the Markov property, which means 
that the future state of a system depends only on the present state and is independent 
of the past. This ensures that the decision-making by the agent does not require any 
analysis of its past history along the trajectory. 
The Markovian decision process is a control process described by five variables:  
S, A, p, R, and γ [Bellman 1957]: 
• S is a set of states (discrete or continuous); 
• A is a set of agent actions (discrete or continuous); 
• p(st+1∣st,at) is a transition function, specifying the probability of moving to state 

st+1 after performing an action  at in state st; 
• R(st+1∣st,at) is a reward function assigning a value (reward or penalty) for the 

transition from st to st+1 as a result of at; 
• γ ∈ [0,1] is a discount factor that determines the significance of future rewards 

relative to current rewards. 

Figure 2 shows a graphical model of the Markovian decision process, including 
rewards, states and actions and transition probabilities, which are conditioned on 
both states and actions, hence p(st+1|st, at). 

2.2.  Cumulative reward  

Policy setting π is an optimisation process, where the function of destination:  
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Fig. 2. Graphical model of the Markovian decision process  

Source: [Francois-Lavet et al. 2018]. 
 
is the accumulated reward on trajectory G(τ) 
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where discount factor γ ∈ [0,1] reduces the weights as the value of time step t 
increases, while rt is the immediate reward received at time step t. The value of 
reward r depends on the state and the action, or sometimes it can depend only on the 
state value and determines which states and actions are better. The objective of RL 
is to find parameters that define policy π(a|s) and maximise the value of the total of 
rewards on trajectory G(τ). 

2.3.  Value function  

The agent’s objective is to find policy π(a|s) ∈ Π that optimises the expected return 
Vπ(s), called the state value function, described by the following formula: 
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From the definition of expected return (2), the optimal return can be easily 
determined as: 
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Another function considered in determining the optimal agent policy is the state-
action value function, Qπ(s,a), defined as: 
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The equation above can be expressed recursively for a Markovian decision process, 
using the Bellman equation [Bellman and Dreyfuss 1962]. 

 [ ]∑
∈

=+=
Ss

sasQassRasspasQ
'

))'(,'(),|'(),}'(),( πγ ππ  (5) 

where s’ is the state in the next time step. As for state value function V, the optimum 
value of state-action value function Q can be defined as: 

 ),(max),(* asQasQ π

π Π∈
=  (6) 

A particular feature of state-action value function Q compared to state value function 
V is that the optimal policy π* can be obtained directly from Q*(s,a) 

 ),(maxarg)( ** asQs
Aa∈

=π  (7) 

The optimal state value function V*(s) denotes the expected discounted reward when 
the agent is in a given state s and then applies the policy π*. Optimal state-action 
value Q*(s, a) denotes the expected discounted return when the agent is in a given 
state s and, for a given action a in that state, further applies the policy π* [Francois-
Lavet et al., 2018]. 

3.  RL ALGORITHMS 

Popular value-based algorithms that build state-action value functions, which in turn 
allow policy determination, were selected for analysis. This work presents the most 
popular value-based algorithms which follow: Q-learning [Watkins 1989] and Sarsa 
[Rummery and Niranjan 1994], and their expansions using the Adam gradient 
optimiser [Kingma and Ba 2014]. 

3.1.  Q-learning  

Q-learning learns value function Q(s,a), which is a prediction of the return associated 
with each action a ∈ A in each state s ∈ S. A temporal difference (TD) is used to 
update state-action value function Q; the temporal difference is between the target 
value and the estimated value at different time steps [Sutton and Barto 1988].  
The rudimentary method of determining TD is to update state value function V(s) as 
follows: 

 )]()([)()( 1 ttttt sVsVrsVsV −++← +γα  (8) 
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where α is the learning rate factor, while γ is the discount factor. In each state, state 
value function V  corresponds to state-action value function Q with the action that 
has the highest predicted return, which can be expressed as: 

 ),()( ttt asQsV ←  (9) 

Since the overriding objective is to maximise received return Q(st,at) then state value 
estimation function V(st+1) can be expressed using the following formula: 

 ),(max)( 1`1 asQsV t
Aa

t +
∈

+ ←  (10) 

After substituting relations (9) and (10) into equation (8), the equation for one-step 
update in the Q-learning method is obtained: 

 )],(),(max[),(),( 1` ttt
Aa

ttttt asQasQrasQasQ −++← +
∈

γα  (11) 

As shown in Watkins [1989], this update converges to a certain fixed value for 
Markovian decision problems with a finite number of states, for which the  
Q-function is stored in an array. When convergence of the Q-function is obtained 
then the optimal policy is the action in each state with the highest projected return. 

In Algorithm 1, there is a pseudo-code operating on equation (11), which allows 
the routing of a transition for a mobile agent using the Q-learning method. 
 

Algorithm 1: Q-learning  
Parameter values: γ = 0.99, α = 0.01. 

Initialise array Q(s,a) for all s ∈ S, a ∈ A 
repeat (for each episode): 

Initialise initial state s0 

repeat (for each step t in the episode): 
at   ← ε-greedy(st, Q)                   (greed-based strategy) 
rt, st+1  ← Environment (st, at) 

)],(),(max[),(),( 1 ttt
a

ttttt asQasQrasQasQ −++← +γα  

st  ← st+1 
until final s 

until stop 
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3.2.  Sarsa 

This method was proposed in Rummery and Niranjan [1994] and termed ‘modified 
.Q-Learning’. This method is now called Sarsa, proposed by Richard Sutton [Sutton 
and Barto 2018] and derived from the first letters of the words (state-action-reward-
state-action), a method used to determine array Q that holds the probability of 
executing action a in state s.  

The rule of update in this method is formulated as follows: 

 )],(),([),(),( 11` ttttttttt asQasQrasQasQ −++← ++γα  (12) 

Algorithm 2 shows the subsequent steps to update array Q based on equation (12). 
 

Algorithm 2: Sarsa 
Parameter values: γ = 0.99, α = 0.01. 

Initialise array Q(s,a) for all s∈S, a∈A 
repeat (for each episode): 

Initialise initial state s0 

a0  ← ε-greedy(s0, Q)                   (greed-based strategy) 
repeat (for each step t in the episode): 

rt, st+1  ← Environment (st, at) 
at+1  ← ε-greedy(st+1, Q)             (greed-based strategy) 

)],(),([),(),( 11` ttttttttt asQasQrasQasQ −++← ++γα  
st  ← st+1 

at  ← at+1 
until final s 

until stop 
 

3.3.  Q-learning I Sarsa with the Adam optimizer  

The Adam optimiser (where Adam stands for ‘Adaptive Moment Estimation’) is an 
efficient stochastic optimisation algorithm that requires only first-order gradients 
with low memory requirements. The algorithm calculates the first and second 
moments of the gradients, which are estimates of the mean and uncentred variance 
of the gradients, respectively. These moments are used to update the model 
parameters [Kingma and Ba 2014]. 

Algorithm 3 features a pseudo-code showing the subsequent steps to update the 
parameters of array Q using Q-learning with the Adam optimiser. The algorithm 
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starts by initialising the first (mt) and second (vt) moment variables to zero. During 
each learning iteration, gradients of the model parameters against the loss function 
are calculated. 

 

Algorithm 3: Q-learning with the Adam optimizer 
Parameter values: γ  = 0.99, α = 0.01, β1 = 0.9, β2 = 0.999, ∈ = 10-8. 

f(s,a;θ) ← 0 (initialisation of the evaluation function for all s∈S, a∈A) 
m0  ←  0    (initialisation of the first moment variable) 
v0  ←  0    (initialisation of second moment variable) 
repeat (for each episode): 

Initialise initial state s0 

Initialise time step, t ← 0 
repeat (for each step t in the episode): 

Q(s,a) ← f(s,a;θt) 
at ← ε-greedy(st, Q)                (greed-based strategy) 
rt, st+1← Environment (st, at)    (agent’s impact on the environment) 

(a) ),(max 1 tt
a

t asQry ++← γ     (target function value) 

yasQQ tt −←∆ ),(  
0);,( ←∇ θθ asf       (initialisation of the gradient for all s∈S, a∈A) 

Qasfasf tttt ∆+∇←∇ );,();,( θθ θθ  
t ← t + 1 

);,( θθ asfgt ∇←                      (evaluation function gradient at step t) 

ttt gmm ⋅−+⋅← − )1( 111 ββ  (first moment update) 
2

212 )1( ttt gvv ⋅−+⋅← − ββ  (second moment update) 

)1(1ˆ 12
tt ββαα −−⋅←  (scaling of learning step size) 

( ))(ˆ);,();,( 1 ∈αθθ +⋅−← − tttt vmasfasf  (parameter update) 
(b) st  ← st+1 

until final s 
until stop 

 

To obtain the pseudo-code for Sarsa with the Adam optimiser, algorithm 3 requires 
replacing the lines (a) and (b) with the following: 

(a) ),( 11 +++← ttt asQry γ             (target function value) 
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(b) st ← st+1;    at ← at+1 

Apart from these two lines of code, there are no other differences in the pseudo-code 
for the Q-learning and Sarsa algorithms with the Adam optimiser.  

4.  SIMULATION STUDIES  

This work focuses on the analysis of basic RL algorithms. Figure 3 shows a raster 
map containing the static obstacles and the determined path of transition using all 
four RL algorithms of interest. The set of possible actions of agent a was four-
element, A = {N, S, E, W}, congruent with geographical directions (N – north, S – 
south, E – east, W – west). 
 

 
 

Fig. 3. Diagram of the test environment (left) and the agent’s trajectory after the learning 
process end (right) produced for all four RL algorithms of interest 

4.1.  Result analysis 

Table 1 shows selected parameters for evaluating the RL algorithms of interest. 
Based on the results in the table, there are distinct differences in the operation of the 
algorithm variants of interest. The least number of steps to reach the destination was 
shown by Q-learning with the Adam optimiser, which demonstrated the rapid 
progression to a stable policy. Sarsa with Adam achieved a very similar result, which 
may indicate that the Adam optimiser was working effectively in the early stages of 
training. The basic versions of both algorithms, Q-learning and Sarsa, achieved 
similar, significantly higher step count values, indicating slower learning rates. 
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Table 1. Summary of results for the selected assessment metrics 

Algorithm Basic Q-
learning 

Q-learning  
+ Adam Basic Sarsa Sarsa  

+ Adam 

Total number of agent’s steps 258721 140368 259678 141176 

Average step count, success only 24.0667 24.0667 24.2667 24.2667 

Average total step count 51.74 28.07 51.94 28.42 

Step count standard deviation 63.95 27.07 64.47 29.09 

Average reward -13.67 -14.33 -13.27 -13.87 

Average reward variance, last 1000 0.45 0.38 0.18 0.21 

Average reward after 25%  
of training time -191.2 -173.43 -192.94 -101.47 

Average reward after 25% to 50%  
of training time -46.94 -14.05 -47 -13.47 

Improvement, % (1st stage  
vs 2nd stage) 75.4% 91.9% 75.6% 86.7% 

Average final reward, last 1000  -13.43 -14.16 -13.34 -13.48 

 
 Considering the average number of steps (step count) per episode (which 
included failed episodes), Sarsa+Adam and Q-learning+Adam again performed 
better, with values of 28.42 and 28.07 respectively, demonstrating efficient finding 
of the optimal trajectories. The basic Sarsa and Q-learning versions required, on 
average, close to 52 steps per episode, which means significantly lower efficiency. 
In terms of stability (the step count standard deviation), the Adam-including 
algorithms were much more repeatable with deviations within 27 to 29, while the 
basic variants had more than 63. 
 Analysing the reward trend over time, the average reward after 25% of training 
time was weakest for the basic variants of Sarsa and Q-learning (-192.94 and -191.2), 
and significantly better for the Adam optimiser-enabled versions (-101.47 and  
-173.43). In the second stage (between 25% and 50% of episodes), Sarsa  
with the Adam optimiser and Q-learning with the Adam optimiser achieved very 
good values, -13.47 and -14.05, respectively. The improvement between these stages 
was the highest for Q-learning + Adam (91.9%) and Sarsa + Adam (86.7%), 
indicating a large increment in the quality of the strategy in a short time.  
 Comparing the average final award in the last 1000 episodes, the basic  
Q-learning (-13.43) performed best, followed closely by the basic Sarsa (-13.34); 
here, Sarsa + Adam was slightly weaker (-13.48). The weakest result was with  
Q-learning + Adam (-14.16). 
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4.2.  Visualisation of the learning process dynamics 

Figures 4–7 show the learning curves of the algorithms of interest. In these curves, 
the number of steps is shown on the vertical axis in a single episode, while the 
horizontal axis shows the number of each next episode. The maximum number of 
steps in a single episode was 500. This means that the agent should find the 
destination point on the map within this interval of steps; if the agent fails,  
the episode is interrupted and the next episode run from the starting point in the top 
left corner of the map. 
 The curves shown in Figures 4 to 7 provide a graphical assessment of the rate 
at which the optimum path of transition was found on the map shown in Figure 3. 
Sarsa + Adam converged very quickly to a low step count and a stable decision-
making policy, confirming its high effectiveness early on in the training.  
 Significant improvements in strategy quality already occurred between the first 
and second stages of learning, which distinguishes this variant from the others.  
The basic Q-learning was characterised by the most even learning rate, and maintains 
a high stability of results with gradually improving quality of decisions. It was the 
most predictable and repeatable algorithm. 
 

 
Fig. 4. Curve of the step count per episode for Q-learning (Algorithm 1)  

 In contrast, Q-learning + Adam achieved a significant improvement in the first 
stage of learning, but this did not translate into final quality. The large variance in 
results in the last episodes indicates instability, which could be problematic in 
applications that require consistent decisions. The basic Sarsa, despite the highest 
average overall award, had the slowest improvement dynamics and the highest step 
count, making it the least time-efficient algorithm. 
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 All algorithms converged to comparable final trajectories, but differed in their 
style of arriving at optimal strategies, from rapid convergence and instability  
(Q-learning+Adam), high quality and predictability (Q-learning), to efficiency in 
learning at the expense of consistency (Sarsa + Adam). 
 
 

 
Fig. 5. Curve of the step count per episode for Q-learning + Adam (Algorithm 3) 

 

 
Fig. 6. Curve of the step count per episode for Sarsa (Algorithm 2) 
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Fig. 7. Curve of the step count per episode for Sarsa + Adam  

(Algorithm 3 with code lines (a) and (b))  

4.3.  Evaluation in the context of practical applications 

The (basic) Q-learning algorithm is recommended for environments where a balance 
between exploration and stability is important, e.g. in critical decision-making 
systems;  
Sarsa with the Adam optimiser will perform well where fast learning and error 
reduction are a priority, such as in the navigation of autonomous vehicles. 
 The basic Sarsa algorithm can be useful in scenarios where the quality of 
decisions is more important than the rate at which they are reached, while the  
Q-learning with the Adam optimiser can be considered for tasks that require 
intensive exploration but have lower stability requirements. 

5.  CONCLUSIONS  

The results show that there is no single algorithm for RL that is optimal in all aspects. 
Sarsa with the Adam optimiser achieved the best results in terms of convergence 
speed, number of steps taken and dynamic strategy improvement in the early phase 
of training. It can be a good choice for applications requiring quick performance with 
acceptable stability. 
 In contrast, the basic Q-learning stands out for having the highest quality final 
strategy and the greatest stability of results, both in terms of the number of steps and 
the reward. This makes it suitable for environments which require predictable and 
consistent decisions in the long term. 
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 The two other variants, the basic Sarsa and Q-learning with Adam optimiser, 
presented clear limitations. The basic Sarsa learned too slowly and required more 
steps to reach the destination, despite a high average overall reward. In contrast,  
Q-learning with the Adam optimiser was characterised by high variability and poorer 
final results, despite a fast start and significant improvement in the initial stages. 
 The choice of algorithm should depend on the characteristics of the task and the 
application priorities: whether the rate of learning, the final quality of the strategy, 
or its stability and repeatability of performance are more important. 
 Future work include plans to expand the analysis to include environments  
with dynamic obstacles and tests under variable topology of space. This will allow  
a better assessment of the adaptability and robustness of the tested methods under 
real-world conditions. 
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