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Abstract: Principal component analysis, being one of the best techniques for dimensionality 
reduction, is implemented by using one of the two high-accuracy algorithms: the singular value 
decomposition (SVD) and eigenvalue decomposition (EVD). The EVD is generally faster than 
the SVD, except for datasets with fewer observations or when the observation has fewer 
features. Apart from cases of shallower datasets consisting of just a few hundred double-
precision observations, the EVD speeds up computing principal components by at least 4.5%, 
whereas the average speedup in 45% widely varies from 12% to 92%. The speedup on non-
shallower single-precision datasets is roughly similar, but it nonetheless makes no sense due 
to EVD poor accuracy while operating on numeric data with single precision. The EVD is 
efficient if the dataset consists of no fewer than a few hundred observations (objects) having 
at least three double-precision features. 

Keywords: Big Data, dimensionality reduction, principal component analysis, singular value 
decomposition, eigenvalue decomposition, performance, efficiency. 

1.  INTRODUCTION 

In the present era of digitalization, Big Data has become not just a category of 
massive datasets, but also a scientific field of acquiring, storing, and analyzing such 
datasets for purposes of civilization evolution. Big Data has been extensively 
updating and revolutionizing logistics and transport, smart cities, media and 
entertainment, marketing and advertising, cybersecurity, healthcare, ecology, 
climate and earth science, industry, and education [Akter and Wamba 2023; 
Jamarani et al. 2024]. Preprocessing data includes filtering out messy and noisy data, 
transformation, and feature extraction, where possible simplification of a large 
dataset is often a primary task [Demirbaga et al. 2024]. Dimensionality reduction is 
the main paradigm to reasonably simplify large datasets without losing consistent 
information [Krishnan, Samaranayake and Jagannathan 2019; Oliveira and Cordeiro 
2020]. Dimensionality reduction also allows preliminarily visualizing a high-
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dimensional dataset, sometimes without further usage, just to see meaningful spots, 
trends, or clusters in the dataset in order to use them in further analysis of a simplified 
dataset having more than three features [Demirbaga et al. 2024; Olszewski 2025]. 

One of the best and most applicable techniques for dimensionality reduction is 
principal component analysis (PCA). The PCA linearly transforms the dataset onto 
a new coordinate system whose directions acquire the largest variation in the data 
[Olivieri 2024; Si-ahmed et al. 2025]. These directions sorted in descending order 
correspond to principal components. The principal components constitute an 
orthonormal basis in which the different individual dimensions of the data are 
linearly uncorrelated [Härdle, Simar and Fengler 2024]. Therefore, the PCA is 
defined as an orthogonal linear transformation on a real inner product space that 
transforms the data to a new coordinate system such that the greatest variance by 
some scalar projection of the data comes to lie on the first coordinate (being the first 
principal component), the second greatest variance lies on the second coordinate, 
and so on. 

If the dataset is an M N×  matrix  

 [ ]mn M N
x

×
=X  (1) 

representing M  observations of N -dimensional objects (i. e., objects with N  
features), where usually M N> , the PCA returns N  principal components 
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N

n kn N n
p

× =
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that are unit vectors [Olivieri 2024] in the columns of matrix 

[ ]kn N N
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×
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i. e. 
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The n -th vector, 2,n N= , is the direction of a line that best fits the data while being 
orthogonal to the first 1n −  vectors [Jolliffe and Cadima 2016]. A best-fitting line 
minimizes the average squared perpendicular distance from the points to the line 
[Härdle, Simar and Fengler 2024]. The first principal component of a dataset 
represented by matrix (1) is constructed as a linear combination of the original N  
variables, and it explains the most variance of the data. The first principal component 
corresponds to a direction that maximizes the variance of the projected data.  
The second principal component explains the most variance in what is left once  
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the effect of the first principal component is removed. Thus every next principal 
component explains less variance. Together the N  principal components explain all 
the variance. The n -th principal component, 2,n N= , can be taken as a direction 
orthogonal to the first 1n −  principal components that maximizes the variance of the 
projected data. 

With principal components (2), the dataset (1) is transformed into a dataset 
being an M N×  matrix 

 [ ]mn M N
y

×
= = ⋅Y X P  (4) 

whose entries are: 

 
1

N

mn mk kn
k

y x p
=

=∑  for 1,m M=  and 1,n N= . (5) 

In fact, columns of matrix (4), from left to right, are sorted in descending order by 
variation in the original data. If the first *N  principal components 

 [ ]{ }
*

1

N

n kn N N n
p

× =
=P  by { }* 1, 1N N∈ −  (6) 

explain a sufficiently high amount of variance (practically, around 90% or above), 
the remaining *N N−  principal components  

 [ ]{ } * 1

N

n kn N N n N
p

× = +
=P  by { }* 1, 1N N∈ −  (7) 

are ignored. Thus the initial dataset (1) is simplified to a dataset represented as an 
*M N×  matrix  

 [ ] *
*

mn M N
y

×
=Y . (8) 

Obviously, matrix (8) is obtained from matrix (4) by cutting off its *N N−  columns 
from the right. 

2.  PROBLEM STATEMENT 

While the PCA is seemingly a very efficient method for dimensionality reduction of 
large datasets, it can be implemented by using one of the two high-accuracy 
algorithms — the singular value decomposition (SVD) [Li 2024; Zizler and La Haye 
2024] and eigenvalue decomposition (EVD) [Golub and Van Loan 1996; Holmes 
2023]. It is believed that the EVD algorithm is faster than the SVD algorithm when 
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the number of observations exceeds the number of variables, but may be less 
accurate. But, in fact, it is generally unclear when the EVD algorithm computes 
principal components faster than the SVD does. Another question is the 
computational time complexity of each of the SVD and EVD algorithms. 

Therefore, the objective is to determine when each of the SVD and EVD is 
factually efficient for dimensionality reduction of large datasets. The two numeric 
types to be studied are double and single precision. To achieve the objective, the 
following tasks are to be fulfilled: 

1. To generate random large datasets as matrices of a specified numeric type, 
where the generation should be done repeatedly to obtain statistically consistent and 
stable operation speed results upon averaging over a definite number of generations. 

2. To measure computational time of the PCA by the SVD algorithm applied to 
generated matrices, and to measure computational time of the PCA by the EVD 
algorithm applied to the same generated matrices. 

3. To carry out a comparative analysis of the averaged computational times, and 
to estimate the computational time complexity of each of the SVD and EVD 
algorithms. 

4. To discuss the obtained results and findings from the comparative analysis of 
SVD versus EVD. 

5. To conclude on the factual efficiency of the SVD and EVD in the PCA for 
the dimensionality reduction of large datasets, whereupon open questions and 
perspectives of further research are to be outlined. 

3.  DATASETS 

A random dataset modeled as a matrix (1) of a specified numeric type is generated 
by using the standard normal distribution having zero mean and unit variance 
[Romanuke 2018]. Hence, each entry mnx  in the matrix is a value of the normally 
distributed random variable with zero mean and unit variance [Olivieri 2024]. 

As the numeric types to be studied are double and single precision for real 
numbers, there will be two series of random datasets. For these two types the number 
of observations M  is sequentially set to every element of the 37-elemented set 

 { } { } { } { }{ }9 9 9 102 3 4 5
1 1 1 1

M 10 , 10 , 10 , 10
k k k k

k k k k
= = = =

= ⋅ ⋅ ⋅ ⋅  (9) 

and the number of initial variables (i. e., original features) N  is sequentially set to 
every element of the 50-elemented set 

 { } { } { } { } { }{ }9 5 16 10 10
1 1 1 1 1N 1 , 2 10 , 5 20 , 10 100 , 20 200j j j j jj j j j j
= = = = =

= + + + + + . (10) 
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So, by the specified numeric type, there are 1850 versions of the large dataset subject 
to dimensionality reduction. To obtain statistically consistent and stable results of 
operation speed (computational time), the dataset by every couple 

 { },M N  for MM ∈  and NN ∈  (11) 

is generated at 100 different pseudorandom number generator seeds. Thus, the grand 
total is 185,000 large datasets for double and single precision, separately. 
Computational times are stored as a 37 50 100× ×  array for each precision. They are 
averaged over the third dimension (generations), loosely being related to 
dimensionality reduction either, to achieve an average surface of two variables – 
the number of observations and the number of features. 

4.  EFFICIENCY AND COMPUTATIONAL TIME COMPLEXITY 

Denote by ( )SVD , ,t M N i  and ( )EVD , ,t M N i  the time spans taken to compute the 
principal components by the SVD and EVD algorithms, respectively, for (11) by (9), 
(10) at generation i . The respective averaged computational times are 

 ( ) ( )
100

SVD SVD
1

1, , ,
100 i

t M N t M N i
=

= ⋅∑  (12) 

and 

 ( ) ( )
100

EVD EVD
1

1, , ,
100 i

t M N t M N i
=

= ⋅∑ . (13) 

The spans 

 ( ){ }100
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=

 and ( ){ }100
EVD 1

, ,
i

t M N i
=

 (14) 

are measured on a dual-core processor: Intel Core i5-7200U@2.50GHz, with 
11.8 GB RAM in MATLAB R2018a.  

Along with the principal components (2) computed within time spans (14), the 
PCA also returns [Jolliffe and Cadima 2016; Olivieri 2024] the principal component 
scores (PCSs), by which the original dataset without its N  means  

1 1

1
NM

mn
m n

x
M

= =

  ⋅ 
  

∑  

is reconstructed via the matrix product of PCSs and (2); principal component 
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variances (PCVs), that is the eigenvalues of the covariance matrix of (1); Hotelling’s 
T-squared statistic values (HT2Vs), which is the sum of squares of the standardized 
scores for each observation; percentages of the total variance explained by each 
principal component (TVEPs). The percentages of unsigned relative differences 
(URDPs) for principal components (2), PCSs, PCVs, HT2Vs, and TVEPs by the 
SVD and EVD algorithms are calculated to see the impact of the EVD algorithm on 
the PCA findings with respect to the SVD algorithm. Denote the maxima of those 
URDPs by  

 ( )PC ,M Nδ , ( )PCS ,M Nδ , ( )PCV ,M Nδ , ( )HT2V ,M Nδ , ( )TVEP ,M Nδ , (15) 

respectively. 
The double-precision SVD computational time (12) is shown in Figure 1. 

Except for a computational artifact at 59 10M > ⋅  and 300N > , surface (12) 
smoothly increases as the double-precision dataset size (i. e. the number of its entries 
M N⋅ ) increases. The double-precision EVD computational time (13) shown in 
Figure 2 has a similar surface. Datasets of a million observations by 400 double-
precision features are handled by the EVD algorithm within 116 seconds, whereas 
the SVD algorithm takes longer than 200 seconds.  

 

 
Fig. 1. The average computational time of the SVD algorithm for datasets  

with double precision 
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Nevertheless, it is hard to conclude on the EVD algorithm efficiency solely from 
Figure 2. Henceforward, the relative difference between (12) and (13) is 

 ( ) ( )
( )

SVD

EVD

,
,

,
t M N

r M N
t M N

= , (16) 

 

 
Fig. 2. The average computational time of the EVD algorithm for datasets  

with double precision 
 

where ( ), 1r M N >  implies that the EVD algorithm is efficient at a given couple 

{ },M N . Ratio (16) is shown in Figure 3 for double precision as a surface mesh.  
It is noticeable that surface (16) falls off its peak at  

 56 10M > ⋅  and 200N > , (17) 

although ratio (16) is still greater than 1 (17). Another noticeable thing is ratio (16) 
drops below 1 at  

 500M <  and 80N > , (18) 

which is shown in Figure 4. Ratio (16) for double-precision datasets with only two 
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features approximates 1 from above, dropping to 1.02 at 510M = . Occasionally,  

( )9000, 2 0.9829r = , 

but this is the single point of the EVD inefficiency on datasets with only two features 
(moreover, such datasets most likely do not need any dimensionality reduction).  
The peak of ratio (16) at 100M =  and 2N =  (it is the smallest dataset; it is not 
claimed to fit the category of large datasets) is another computational artifact 
probably caused by the peculiarities of starting the computations (primary 
compilation and memory allocation, non-optimized executable code prior to the first 
run, etc.) [Kontoghiorghes 2020; Romanuke 2023; 2024]. The smaller peak at 

6000M =  and 2N =  is caused due to similar reasons. 
 

 
Fig. 3. The relative difference percentage (16) for datasets with double precision  

(the points of the EVD inefficiency are marked with squares) 
 
URDPs (15) for double-precision datasets do not have any trends. The global 

maxima values of the maximal URDPs (15) among 185,000 double-precision 
datasets are 
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 ( )PCSM N
max max , 51.4355
M N

M N
∈ ∈

δ = %, (20) 

 

 
Fig. 4. A zoom-in on the relative difference percentage (16) in Figure 3 to show inefficiency 
of the EVD algorithm at (18) (the points of the EVD inefficiency are marked with squares) 
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Differences in PCVs, HT2Vs, and TVEPs are likely to occur for smaller-sized 
datasets [Jolliffe and Cadima 2016; Krishnan, Samaranayake and Jagannathan 2019; 
Romanuke 2019; Olivieri 2024]. The estimated probability of that PCVs, HT2Vs, 
and TVEPs computed by the EVD algorithm will differ from those by the SVD 
algorithm by 1210−  or more is less than 0.0023. Differences in principal components 
(2) and PCSs computed by the algorithms are far more probable. For instance,  
the estimated probability of that principal components (2) computed by the EVD 
algorithm will differ from those by the SVD algorithm by 910−  or more is about 0.24. 
Such a probability for PCSs is about 0.33. This particularly explains the relatively 
huge URDP for PCSs in maximum percentages (19)–(23) and average percentages 
(24)–(28). Nevertheless, as the difference tolerance is relaxed from 910−  up to  

810− , the mentioned estimated probabilities for principal components (2) and PCSs 
become 0.0049 and 0.0081, respectively, i.e. they drop by 40 to 49 times versus 
raising the tolerance tenfold. 

URDPs (15) for single-precision datasets do not have any trends either, but they 
are extremely poorer. For instance, the estimated probability of that principal 
components (2) computed by the EVD algorithm will differ from those by the SVD 
algorithm by 1% or more is about 0.205. This probability is about 0.555 and 0.91 for 
the difference tolerance of 0.1% and 0.01%, respectively. The single-precision SVD 
computational time (12) shown in Figure 5 is generally longer than that for EVD 
(Fig. 6), but it is shorter than the double-precision SVD computational time (Fig. 1).  

Ratio (16) for the single-precision datasets shown in Figure 7 resembles those 
for double-precision datasets (Fig. 3), but it does not have a drop at (17) or anything 
like that. To the contrary, drops below 1 at (18) are very similar to those in Figure 3 
(with the zoom-in shown in Fig. 4). Similar computational artifacts [Kontoghiorghes 
2020; Romanuke 2023; 2024] are also noticeable at fewer observations (a few 
thousand) and nearly the fewest number of features (the front corner of the surface 
mesh). 

Both the SVD and EVD algorithms have the same polynomial time complexity, 
regardless of precision [Zimand 2004; Enderton 2011; Downey 2024; Posthoff 
2024]. Due to the PCA the computational time is statistically really unstable, it is 
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hard to ascertain the best degree of the fitting polynomial. It is either cubic or the 
fourth-degree polynomial at best, though. However, due to poor accuracy of the EVD 
algorithm in the computing principal components of single-precision datasets, its 
efficiency for dimensionality reduction of such datasets is unquestionably 
devastated. 

 

 
Fig. 5. The average computational time of the SVD algorithm for datasets  

with single precision 

5.  DISCUSSION 

The obtained results visualized in Figures 1–7 confirm that, in computing principal 
components, the EVD algorithm is generally faster than the SVD algorithm, except 
for datasets of fewer observations or when the observation has fewer features  
(Fig. 3, 4, 7). In more detail, the EVD algorithm can be slower at (18), and it is 
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features. However, the task of the dimensionality reduction of a (large) dataset with 
two or three features is trivial, if not meaningless [Li et al. 2025; Meepaganithage, 
Nicolescu and Nicolescu 2025]. 
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Fig. 6. The average computational time of the EVD algorithm for datasets  

with single precision 
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pattern, then the PCA and subsequent dimensionality reduction of the dataset can 
devastate its information and the related knowledge from it [Jolliffe and Cadima 
2016; Olivieri 2024]. Therefore, the EVD algorithm efficiency on non-shallower 
double-precision datasets exists by an additional condition of model linearity. 

 

 
Fig. 7. The relative difference percentage (16) for datasets with single precision  

(the points of the EVD inefficiency are marked with squares) 

6.  CONCLUSION 

In computing the principal components for dimensionality reduction of large 
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more like a polynomial, and extremely large datasets consisting of billions of entries 
can devastate the EVD algorithm efficiency. Having handled the largest dataset of 
400 million entries with 11.8 GB RAM, the devastation already gradually starts for 
such a memory configuration at 120 million entries by 0.6 million observations. This 
open question may be particularly answered by applying the Tall Array approach,  
if only the dataset is stored on disk [Paluszek and Thomas 2024]. However, another 
open question arises about the Tall Array efficiency, where it is unclear when  
a dataset can be treated as large enough to be efficiently converted into a tall array. 
Besides, the parallelization of computing principal components should be studied 
also on how to implement the PCA on graphic processing units (GPUs). Therefore, 
a perspective for further research is to study parallelization of the PCA and,  
in particular, both SVD and EVD algorithms. Another perspective is to justify 
conditions, by which a dataset does not hide any significant nonlinear patterns and 
thus can be subject to linear dimensionality reduction by applying the PCA. 
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