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Abstract: Power system lines are not only used for electric energy transfer, but also for the 
transmission of a communication signal, called the mains communication voltage. The mains 
communication voltage is in the form of a telegram code, superimposed on the fundamental 
voltage harmonic. From the point of view of power quality, mains communication voltage 
should be considered as interharmonics – components of frequency being not equal to the 
integer multiple of the fundamental frequency. Interharmonics have a negative impact on 
various energy receivers, including rotating machinery. This study is devoted to the effect of 
the mains communication voltage on an induction motor. The results of numerical 
computations on currents and electromagnetic torque pulsations are presented for a four-pole 
cage induction motor of rated power 3 kW. 

Keywords: interharmonics, power quality, cage induction motor, mains communication 
voltage, ripple control, voltage waveform distortions. 

1.  INTRODUCTION 

Power lines are used not only to transmit electricity, but also to transmit 
communication signals [Bollen and Gu 2006; Yang and Dennetière 2009; Dzung, 
Berganza and Sendin 2011; Battacharyya, Cobben and Toonen 2013; Garma and 
Šesnić 2014; Rahman et al. 2019; Boutsiadis, Tsiamitros and Stimoniaris 2021; 
2022; Tsiakalos et al. 2021; Muttaqi et al. 2022], called the ‘mains communication 
voltage’ (MCV) [EN 50160 2010/A2:2019]. It is a solution used in Australia, 
Austria, Belgium, Bosnia and Herzegovina, Croatia, Montenegro, the Czech 
Republic, Finland, France, Germany, Greece, Hungary, Ireland, Japan, Libya, 
Luxembourg, Macedonia, the Netherlands, New Zealand, South Africa, Serbia, 
Slovenia, Slovakia and the USA, among others [Garma and Šesnić 2014]. The 
permitted frequencies and values of the mains communication signal are defined in 
EN 50160, Voltage characteristics of electricity supplied by public electricity 
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networks [EN 50160 2010/A2:2019]. According to EN 50160 2010/A2: 2019,  
the mains communication signal frequency should be between 0.1 kHz and 100 kHz, 
and the permitted signal value depends on the frequency. For the 0.1 kHz to 0.4 kHz 
frequency range, “for 99% of a day the 3 s mean value of signal voltages shall be 
less or equal to 9%” [EN 50160 2010/A2:2019]. In practice, such a provision allows 
the use of MCVs of arbitrarily large values, provided that the total duration of the 
mains communication signal does not exceed 14 minutes and 24 seconds a day 
[Gnaciński et al. 2023]. Also note EN 50160 2010/A2:2019 specifies that for 
frequencies higher than 0.4 kHz, the permissible value of the mains communication 
signal is lower. For 0.4 kHz to 1 kHz frequencies, the signal value gradually 
decreases to 5%, for 1 kHz to 10 kHz frequencies, the signal value is constantly 5%, 
and for 1 kHz to 100 kHz, the signal value gradually decreases to 1%.  
 The MCV is in the form of a telegram code [Rahman et al. 2019; 2022] with  
a duration of, for example, ~100 s [Yang and Dennetière 2009], generated by static 
converters in medium-voltage systems [Yang and Dennetière 2009; Dzung, 
Berganza and Sendin 2011; Rahman et al. 2019]. The typical value of the MCV 
generated is 1 to 5% of the rated system voltage [Garma and Šesnić 2014]; 
nevertheless, resonant phenomena in the system can increase this voltage [Yang and 
Dennetière 2009]. The MCV passes from the medium-voltage system, via 
transformers, to the low-voltage side [Yang and Dennetière 2009; Dzung, Berganza 
and Sendin 2011; Rahman et al. 2019], where it is used to control various electrical 
equipment. For example, the MCV of the system is used to control photovoltaic 
systems (to prevent overproduction of electrical power), electricity meters, street 
lights, or to temporarily switch off certain loads during peak energy times, like heat 
pumps, water heaters, swimming pool pumps, etc. [Dzung, Berganza, and Sendin 
2011; Tsiakalos et al. 2021]. Specific loads can understand an individual MCV code 
[Dzung, Berganza and Sendin 2011]. Note that the control of, for example, PV 
systems using the MCV of the system or grid is cheaper than commanding these PV 
systems with data over the Internet and, in addition, is cyber-secure [Boutsiadis, 
Tsiamitros and Stimoniaris 2021; 2022].  

Considering electrical power quality, the MCV of the system should be 
considered as an instance of voltage interharmonics – that is, components with 
frequencies that are not an integer multiple of the fundamental harmonic frequency. 
Note that there are many sources of interharmonics in electrical power systems.  
They are generated by time-varying power loads, power electronic devices like 
inverters, renewable energy sources like wind turbines and PV arrays, [Testa et al. 
2007; Arkkio et al. 2018; Nassif 2019; Ravindran et al. 2020; Avdeev et al. 2021], 
among others. Cyclic voltage fluctuations can be considered as a composite of  
the fundamental voltage harmonic and components with frequencies lower than  
the fundamental harmonic frequency, meaning interharmonics and subharmonics 
[Gallo et al. 2005; Bollen and Gu 2006; Tennakoon, Perera and Robinson 2008; 
Ghaseminezhad et al. 2021b; Gnaciński et al. 2022].  
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Voltage interharmonics interfere with the operation of a variety of electrical 
equipment types, like light sources, transformers, control systems, power electronic 
devices and electrical machines [Gallo et al. 2005; Tennakoon, Perera and Robinson 
2008; Ghaseminezhad et al. 2017; 2018; Gnaciński et al. 2019b; Ghaseminezhad et 
al. January 2021a,b; Gnaciński et al. 2021; 2022; 2023], which are considered 
particularly sensitive to interharmonic effects. Interharmonics can result in excessive 
vibration and torsional oscillations, increased power losses, as well as torque and 
speed fluctuations, among other effects. A similar effect is caused by a mains 
communication voltage which interferes with the operation of light sources, audio 
devices, devices which count voltage transitions through zero and induction motors, 
among others [Battacharyya, Cobben and Toonen 2013; Rahman et al. 2019; Muttaqi 
et al. 2022; Gnaciński et al. 2023]. Earlier work by the authors [Gnaciński et al. 
2023] showed that MCV can cause torque fluctuations of 50% of the rated torque 
and vibrations in an induction motor, resulting in damage to the machine  
(the vibration damage evaluation zone D according to ISO 10816-1 1995; ISO 
20816-1 2016).  

To the authors’ knowledge, Gnaciński et al. 2023 is the only paper published 
which deals with the effect of MCV on an induction motor. Note that the main 
objective of Gnaciński et al. 2023 was to demonstrate that the permissible voltage 
limits specified in EN 50160 2010/A2:2019 are too tolerant and fail to protect 
induction motors from damage. In practice, [Gnaciński et al. 2023] do not exhaust 
the issue of the MCV effects on induction motors, a problem which needs further 
development. The research in [Gnaciński et al. 2023] should lead to the formulation 
of a proposal to modify EN 50160 2010/A2:2019 and establish new MCV limits. In 
practice, the formulation of a proposal for modification of EN 50160 2010/A2:2019 
requires an in-depth investigation into the MCV effects of the system on various 
electrical loads and, in particular, on electrical machinery. 

One issue that needs to be developed further is the effect of the moment of 
inertia of a driven unit on the detrimental phenomena emerging in an induction motor 
in response to the MCV of the power system. As demonstrated in [Gnaciński et al. 
2019a; 2021; 2022], the moment of inertia of the driven unit has a significant effect 
on the current levels and torque variations of an induction motor supplied with  
a voltage which features subharmonics and interharmonics. What needs to be 
stressed here is that the most damaging phenomena occurring in an induction motor 
supplied with a voltage which features subharmonics and interharmonics – namely 
vibration and torsional oscillation – are directly caused by torque fluctuations 
[Gnaciński et al. 2019b; 2021; 2022; 2023].  

At the same time, the investigation into the effects of MCV of the power system 
on torque fluctuations was limited in Gnaciński et al. 2023 to a case in which the 
moment of inertia of the driven unit was significantly smaller than the moment of 
inertia of the driving motor.  
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The objectives of this paper are formulated considering the problems 
highlighted above. The main objective is to complement the research results 
presented in Gnaciński et al. 2023 and to assess the effect of the moment of inertia 
of the driven unit on the detrimental phenomena in the induction motor caused by 
the MCV of the power system. The current levels and torque of the motor were 
studied in this work using a finite element method (FEM). The results of the 
calculations are presented for a four-pole squirrel-cage induction motor rated at  
a power of 3 kW.  

2.  MOTOR MODEL 

The test object was a squirrel-cage induction motor, type TSg 100L-4B type, with 
selected parameters listed in Table 1. A two-dimensional motor model was 
implemented in the ANSYS Electronics Desktop 2022R2.4 environment (previously 
known as ANSYS Maxwell). The temperature of the stator and rotor windings was 
determined using a thermal equivalent motor diagram. The effects of vibration and 
deformation were disregarded. 

 
Table 1. Selected parameters of the test motor type TSg 100L-4B 

 

 
 
 
 
 
 
 
 
 
 
 
 
The initial subdivision mesh was generated using the RMxprt module and then 

condensed from a convergence analysis performed on the calculation results.  
The tau subdivision mesh used contained approximately 22,000 elements.  
The maximum edge length of the finite elements was about 2.5 mm in the rotor core 
and about 4.9 mm in the stator core. To improve the convergence of the solution, 
areas with a condensed subdivision mesh, such as the air gap, were introduced.  
The subdivision mesh is shown in Figure 1.  

Specification 
 

Value 

Nominal power [kW] 3 

Rated voltage [V] 380 

Rated current [A] 6.9 

Rated power factor [-] 0.81 

Rated speed [rpm]  1420 

Moment of inertia [kg m2] 0.00702299 

Winding connection system Delta 
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Fig. 1. Mesh used 

Source: own study. 
 
The parameters of the model were identified based on the engine structural data 

and experimental results. The interharmonics present in the voltage were modelled 
using an external power supply circuit generated in Maxwell Circuit Editor.  
The external power circuit comprised electromotive forces connected in series to 
modulate the fundamental voltage harmonic and the interharmonic in each phase 
(Fig. 2). Calculations were performed using a transient solver. 

The model was verified experimentally in earlier work by the authors, e.g. 
[Gnaciński et al. 2019a; 2021]. For a more detailed description of the model,  
see [Gnaciński et al. 2019a; 2021]. 

 

 
Fig. 2. Example of an external power supply circuit generated in Maxwell Circuit 

Editor; Ua, Ub, Uc –– voltage sources modelling the fundamental harmonic of the supply 
voltage; Uha, Uhb, Uhc – voltage sources modelling the interharmonic; Ra, Rb, Rc – resistance 

levels of individual winding bands; La, Lb, Lc – 9.45 mH; 
LPhaseA, LPhaseB, LPhaseC – 94.1 mH – inductance levels of the winding ends and the grooved 

section of the stator windings 

Source: own study. 
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3.  RESULTS 

Below are the calculation results for the motor’s supply current and torque. The 
results are presented for two extreme cases – a negligible moment of inertia (NMI) 
load operation and constant rotational speed (CRS) operation, which roughly 
corresponded to loaded operation with a moment of inertia significantly greater than 
the motor’s moment of inertia. For simplicity, it was assumed that a single 
interharmonic of the positive sequence and a value equal to 9% of the rated voltage 
is present in the supply voltage. In addition, the motor load torque was assumed to 
be negligible, making the presented calculation results fully comparable with those 
in [Gnaciński et al. 2023] (limited to NMI). Note that the highest oscillations of an 
induction motor supplied with a voltage with subharmonics and interharmonics 
occur at idle speed, and that induction motors driving some equipment [Singh and 
Chelliah 2017; Singh et al. 2020] can temporarily operate at a load much lower than 
the rated load. 

Figures 3 and 4 show the current waveforms for a voltage interharmonic with 
fih = 101 Hz with CRS and NMI, respectively. The spectra of the waveforms are 
shown in Fig. 5 and 6. For CRS (Fig. 5), the fundamental harmonic current was 
65.14% of the rated current (Inom) and the interharmonic current at fih  = 101 Hz is 
29.74% Inom. For NMI (Fig. 6), the fundamental current harmonic and interharmonic 
were equal to 65.70% Inom and 36.74% Inom. The differences were due to variations 
in speed for the NMI case. As demonstrated by [Gnaciński et al. 2019a,b; 2021; 
2022], rpm fluctuations can significantly amplify the detrimental phenomena 
occurring in an induction motor supplied with a voltage which features subharmonics 
and interharmonics. The rpm fluctuations are caused by torque pulsations, the 
frequency of which could be determined using a relationship [Tennakoon, Perera and 
Robinson 2008]: 

 𝑓𝑓𝑝𝑝 = 𝑓𝑓𝑖𝑖ℎ − 𝑓𝑓1 (1) 

with: 
𝑓𝑓𝑝𝑝  – torque pulsation frequency for a supply voltage with a positive sequence 

interharmonic; 
𝑓𝑓𝑖𝑖ℎ   – interharmonic frequency; 
𝑓𝑓1  – fundamental harmonic frequency of the supply voltage. 

 
Note that for subharmonics and interharmonics with frequencies below 100 Hz, 

the differences between CRS and NMI were much larger [Gnaciński et al. 2019a; 
2021]. In addition, the current spectra shown in Figures 5 and 6 did not contain 
subharmonic components. Their presence was detected for supply voltages featuring 
interharmonics that were below 100 Hz [Gnaciński et al. 2021]. 
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The next graph (Fig. 7) compares the characteristics of the current 
interharmonics vs. the voltage interharmonic frequency, fih for CRS and NMI.  
The relevant characteristics for NMI were adopted from [Gnaciński et al. 2023]. 
Figure 7 demonstrates that, for the motor of interest, the moment of inertia of the 
driven unit had relatively little effect on the flow of current interharmonics.  
The effect was virtually negligible for interharmonics with frequencies above 
approx. 150 to 200 Hz. In comparison, the effect of the moment of inertia of the 
driven unit on current interharmonics was significant for voltage interharmonics that 
were below 100 Hz [Gnaciński et al. 2021]. 

As already mentioned, vibration and torsional oscillations of rotating machinery 
should be considered as particularly harmful phenomena caused by subharmonics 
and interharmonics. Their direct cause is torque pulsations [Gnaciński et al. 2019b; 
2021; 2022; 2023].  

Figures 8 and 9 show the motor torque waveforms for CRS, NMI and an 
interharmonic at fih = 101 Hz. The spectra of the waveforms are shown in Figures 10 
and 11. In both charts, the highest torque component had a frequency of 51 Hz, 
defined by the relation (1). The other frequency components were much smaller. The 
component was equal to 38.78% of the rated torque (Tnom) for CRS (Fig. 8) and 
50.24% Tnom for NMI (Fig. 9). For comparison, for the tested motor supplied with a 
voltage featuring an interharmonic at fih = 80 Hz, the torque component at the 
frequency determined by relation (1) was about four times higher for NMI than for 
CRS [Gnaciński et al. 2021].  

Figure 12 shows the characteristics of the considered torque pulse component 
as a function of the voltage interharmonic frequency, fih for CRS and NMI. For the 
NMI, the characteristics were quoted from Gnaciński et al. 2023. As in the case of 
current interharmonics, the moment of inertia of the driven unit had virtually no 
effect on the motor torque pulsations with interharmonics at frequencies above 
approximately 200 Hz. 

In summary, for the interharmonic frequency range considered, the effect of the 
driven unit’s moment of inertia on the motor current levels and torque pulsations was 
relatively small and much lower than for interharmonic frequencies below 100 Hz 
[Gnaciński et al. 2021]. This was probably due to the high frequency of torque 
pulsations (50 to 350 Hz). Consequently, speed fluctuations were strongly damped 
by the motor’s moment of inertia. Moreover, for the interharmonic frequency range 
of interest, there was no rigid-body torsional resonance observed for subharmonics 
and interharmonics less than 100 Hz [Ghaseminezhad et al. 2018; 2021b; Gnaciński 
et al. 2019b; 2021; 2022]. 
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Fig. 3. Motor current draw waveform for CRS and fih = 101 Hz interharmonic motor voltage 
 
 

 
 

Fig. 4. Motor current draw waveform for NMI and fih = 101 Hz interharmonic motor voltage 
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Fig. 5. Motor current draw spectrum for CRS and fih = 101 Hz interharmonic motor voltage; 
the frequency components were referenced to the rated current 

 
 

 
 

Fig. 6. Motor current draw spectrum for NMI and fih = 101 Hz interharmonic motor voltage; 
the frequency components were referenced to the rated current 
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Fig. 7. Characteristics of the current interharmonics vs. interharmonic frequency for CRS 
and NMI; the frequency components were referenced to the rated current 

 

 
 

Fig. 8. Torque waveform (reference: rated torque) for CRS  
and fih = 101 Hz interharmonic voltage 
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Fig. 9. Torque waveform (reference: rated torque) for NMI and fih = 101 Hz  
interharmonic voltage 

 

 
Fig. 10. Motor torque spectrum for CRS and fih = 101 Hz interharmonic motor voltage;  

the frequency components were referenced to the rated torque 
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Fig. 11. Motor torque spectrum for NMI and fih = 101 Hz interharmonic motor voltage; 

the frequency components were referenced to the rated torque 
 
 

 
Fig. 12. Characteristics of the torque pulse component at the frequency determined 

with (1) vs. voltage interharmonic frequency for CRS and NMI; the frequency components 
were referenced to the motor rated torque 
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4.  CONCLUSIONS 

Previous investigations into the effect of the mains communication voltage (MCV) 
on induction motors [Gnaciński et al. 2023] were carried out ignoring the effect of 
the moment of inertia of driven units coupled to such motors. However, as 
demonstrated by [Gnaciński et al. 2019b; 2021; 2022], the detrimental phenomena 
occurring in an induction motor supplied with a voltage that features subharmonics 
and interharmonics (like current subharmonic and interharmonic flows and torque 
pulsations) significantly depend on the moment of inertia of the driven unit.  
The results presented in this paper demonstrate that, for the interharmonic frequency 
range corresponding to the MCV, the moment of inertia of the driven unit has  
a relatively small effect (at voltage interharmonic frequencies of less than about  
150 Hz to 200 Hz in the case of the tested motor) or even an negligible effect (for 
voltage interharmonic frequencies greater than about 150 Hz to 200 Hz) on the 
current interharmonics and torque pulsations of the motor. This is probably due to 
the strong damping of speed fluctuations by the motor's moment of inertia for the 
interharmonic frequency range considered. Moreover, there is no rigid-body 
torsional vibration resonance for the range of interest. 
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