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Abstract: In recent years, RNA research has grown due to the discovery of its important role 
in biological systems. RNA molecules are involved in protein synthesis and play a critical role 
in gene expression. Many of these molecules are produced through the enzymatic digestion 
or spontaneous degradation of larger molecules, and are consequently essential for cellular 
processes. The mechanisms of RNA degradation appear to be one of the most important 
factors influencing RNA activity. 
In this study, a stochastic Petri net-based model of spontaneous (non-enzymatic) RNA 
degradation was built and analysed. The model was analysed using t-invariants, MCT sets, 
and simulation-based analyses. The systems approach enabled a thorough analysis of the 
phenomenon, resulting in significant biological insights. 

Keywords: nonenzymatic RNA hydrolysis, RNA degradation, stochastic Petri net, 
mathematical modelling, simulation. 

1.  INTRODUCTION  

A major breakthrough was made in biology in the latter half of the 20th century, with 
the discovery of the fundamental processes behind the expression of biological 
information. The central dogma was created to describe the workings of living 
organisms, with DNA as the primary genetic information carrier and proteins as the 
primary building blocks and regulators of gene expression. Initially, RNA was 
thought to have only a supporting role as an intermediary in protein synthesis and as 
a scaffold for multi-enzyme complexes [Ross 1995]. 

Nevertheless, new sequencing techniques have shown that gene expression is 
more complex than was previously thought. It was found that in animals and plants, 
protein-coding regions represent only a small portion of the genetic material, and 
non-coding RNA molecules, such as srRNA (small regulatory RNA), play  
a significant role in genetic expression [Wang et al. 2017; Zhang et al. 2019].  
This has led to ongoing research on RNA functions and a new perspective on the 
transcriptome [Jackowiak et al. 2011]. 
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Regulatory RNAs, 19–28 nucleotides in length, can be produced through enzymatic 
cleavage or non-coding RNA degradation [Jackowiak et al. 2011; Rybarczyk et al. 
2016]. They regulate RNA transcription and translation, RNA degradation, folding 
and editing, and genome structure [Zhang et al. 2019]. 

RNA degradation is a vital process for maintaining cellular homeostasis.  
It involves the removal of unnecessary RNA, RNA maturation and processing, 
quality control, and defence against viral infections. There are two types of RNA 
degradation, namely, non-enzymatic and enzymatic degradation. Research on non-
enzymatic RNA degradation began with the discovery of RNA's catalytic properties 
related to its structure [Bibillo et al. 2000; Kierzek 2001; Simeone et al. 2022]. 
However, studying such complex issues at the cellular level is not experimentally 
possible, so researchers initially examined the effect of the spatial structure of RNA 
on degradation without considering cellular factors. The studies showed that RNA 
degradation depends on RNA structure and that the degradation pattern of RNA 
molecules is similar to that resulting from RNA-cutting enzymes (namely 
ribonucleases). This is likely because proteins that evolved later, favoured and 
facilitated RNA degradation at the same sites where RNA was initially cleaved 
[Kierzek 2001; Rybarczyk et al. 2016; 2017]. 

The RNA degradation mechanisms and protein families are similar in bacteria 
and higher organisms, and any RNA can be degraded, regardless of its function, 
indicating that the spatial structure of RNA is critical for its stability in the cell. 
Despite numerous described RNA degradation mechanisms, this process remains 
poorly understood with many unknown aspects [Kumar et al. 2015]. To gain a deeper 
understanding of this process, novel approaches were employed in the fields of 
systems biology and medicine, which enabled consideration of various aspects of the 
investigated phenomenon [Formanowicz et al. 2018; 2020a,b]. 

Modelling complex biological systems is a challenging process due to the vast 
number of newly discovered biological facts and the dependencies between them. 
Additionally, it is necessary to consider that many processes in living organisms' 
cells occur in parallel, and their elements (substrates, products) may be shared. 
Mathematical formalisms provide significant help in this regard, enabling the 
description of the considered system using a particular model and its analysis, which 
allows for the discovery of previously unknown properties. Additionally, within such 
a developed model, biologists can change its parameters and then test how this will 
affect the behaviour of the investigated biological system [Murata 1989; Koch, 
Reisig and Schreiber 2011].  

In this work, Petri nets were used for this purpose, which are intuitive for 
biologists as they can be represented graphically and are also easy to mathematically 
analyse. As far as I know, there have not been any studies carried out utilizing 
stochastic Petri nets to simulate the non-enzymatic RNA degradation process. 
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2.  MATERIAL AND METHODS  

2.1. Petri nets and stochastic Petri nets 

This section introduces the basics of Petri nets, which are weighted directed bipartite 
graphs consisting of places and transitions. Places represent passive components and 
transitions represent active components, such as chemical compounds and reactions 
in biological systems. Tokens reside in places and determine the state of the system, 
whereas the arcs connecting places and transitions represent causal relationships. 
[Murata 1989; David and Alla 2010; Koch, Reisig and Schreiber 2011]. 

More formally, a Petri net is 5-tuple 𝑄𝑄 = (𝑃𝑃,𝑇𝑇,𝐹𝐹,𝑊𝑊,𝑀𝑀0), where  
𝑃𝑃 = {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛} is a finite set of places, 𝑇𝑇 = {𝑡𝑡1 , 𝑡𝑡2, … , 𝑡𝑡𝑚𝑚} is a set of transitions, 
𝐹𝐹 ⊆ (𝑃𝑃 × 𝑇𝑇) ∪ (𝑇𝑇 × 𝑃𝑃) is a set of arcs, 𝑊𝑊:𝐹𝐹 → ℤ+ is a weight function, 𝑀𝑀0:𝑃𝑃 → ℕ 
is an initial marking, 𝑃𝑃 ∩ 𝑇𝑇 = ∅ ∧ 𝑃𝑃 ∪ 𝑇𝑇 ≠ ∅ [Murata 1989]. 

Tokens move between places and transitions following the firing rule, which 
requires pre-places to contain enough tokens to match the arc weight. Enabled 
transitions can then fire, moving tokens from pre-places to post-places with the 
amount transferred corresponding to the arc weight. 

Petri nets have an intuitive graphical representation, where transitions are 
displayed as rectangles or bars, and places are shown as circles. The connections 
between places and transitions, or transitions and places, are illustrated as arrows. 
Tokens, or the entities that move within the system, are depicted as dots or positive 
integers that are placed in the circles representing places. The weight of the arcs is 
represented by positive integer numbers. If the weight is equal to one, it is often 
omitted from the graphical representation of the Petri net [Murata 1989; David and 
Alla 2010; Koch, Reisig and Schreiber 2011]. 

Stochastic Petri nets (SPNs) are an extension of the previously mentioned 
classical Petri nets. Just like classical Petri nets, stochastic nets maintain discrete 
numbers of tokens in their places. However, in SPNs, a firing rate, which is the 
waiting time or firing delay, is associated with each transition. This firing time of 
transition 𝑡𝑡𝑗𝑗  is a random variable 𝑋𝑋𝑗𝑗 ∈ [0,∞) that follows an exponential distribution, 
with 𝑓𝑓𝑥𝑥𝑗𝑗(𝜏𝜏) = 𝜆𝜆𝑗𝑗(𝑚𝑚) ∙ 𝑒𝑒−𝜏𝜏 (𝑚𝑚)∙𝜏𝜏 , 𝜏𝜏 ≥ 0 probability density function [Bause and 
Kritzinger 2013], where 𝑚𝑚 is the number of transitions, and 𝜏𝜏 represents the time 
variable. Thus 𝑓𝑓𝑥𝑥𝑗𝑗(𝜏𝜏) describes the likelihood of the transition 𝑡𝑡𝑗𝑗  firing at a particular 
time 𝜏𝜏 based on the current marking. 

More formally, a stochastic Petri net is 6-tuple 𝑆𝑆𝑃𝑃𝑆𝑆 = (𝑃𝑃,𝑇𝑇,𝐹𝐹,𝑊𝑊,𝑀𝑀0 , 𝑣𝑣), 
where (𝑃𝑃,𝑇𝑇,𝐹𝐹,𝑊𝑊,𝑀𝑀0) is a classical Petri net underlying the SPN. The list of 
marking dependent firing rates that are associated with transitions is represented by 
𝑣𝑣 = {𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑚𝑚}, where m is the number of transitions [Marsan 1989]. The firing 
rates are generally specific to each individual transition and depend on the current 
state of the system. 
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A SPN uses mass-action kinetics for transitions, with stochastic rates 
determined heuristically [Formanowicz 2018]. As exact time dependencies are 
unknown, four constant times approximating the actual values are used ("very short" 
– seconds; "short" – seconds to a minute; "medium" – minutes; "long" – longer than 
half an hour) [Blazewicz et al. 2009]. Next, a time scale ranging from 1 to 100 has 
been developed based on literature and expert knowledge. Rate constants have been 
determined by taking the reciprocal of the values on the time scale [Formanowicz, 
Rybarczyk and Formanowicz 2018]. 

The stochastic Petri net-based model was evaluated using extensive simulation 
experiments. The Gillespie stochastic simulation algorithm (SSA), which is 
implemented in the Snoopy software, was employed for this purpose [Gillespie  
1977; Heiner et al. 2012]. The SSA performs a step-by-step simulation of possible 
steps in the stochastic Petri net, resulting in a valid state of the underlying stochastic 
process at any time point during the simulation. The number of steps used in the 
algorithm was determined based on previous analyses. Since each simulation run 
represents one possible trace of state that changes over time, a significant number of 
simulation runs are necessary to obtain meaningful results. Thus, the simulation run 
traces are averaged to accurately represent the system's behavior. 

T-INVARIANTS. While the graphical depiction of a Petri net is helpful for 
understanding its structure, it is not the most efficient method for analyzing its 
mathematical properties. Instead, a different representation called an incidence 
matrix is utilized. This matrix, denoted as 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑗𝑗�𝑛𝑛×𝑚𝑚 consists of n rows 
(corresponding to places) and m columns (corresponding to transitions). Each entry 
𝑎𝑎𝑖𝑖𝑗𝑗 is an integer that represents the difference between the number of tokens in place 
𝑝𝑝𝑖𝑖 after and before the firing transition 𝑡𝑡𝑗𝑗 . 

In a Petri net model of a biological system, analyzing its invariants is crucial. 
There are two types of invariants, namely place invariants (p-invariants) and 
transition invariants (t-invariants). A p-invariant is a solution vector 𝑦𝑦 ∈ ℕ𝑛𝑛  to the 
equation 𝐴𝐴𝑇𝑇 ∙ 𝑦𝑦 = 0, where n is the number of places. A t-invariant is a solution 
vector 𝑥𝑥 ∈ ℕ𝑚𝑚 to the equation 𝐴𝐴 ∙ 𝑥𝑥 = 0, where m is the number of transitions.  

In this study, I will focus on analyzing t-invariants. Each t-invariant x has  
a support, denoted by 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑥𝑥), which is the set of transitions corresponding to 
positive entries of x. A t-invariant is considered minimal if no other t-invariant's 
support is a proper subset of its support. A Petri net is considered covered by  
t-invariants if every transition belongs to the support of at least one t-invariant.  
The t-invariants correspond to subprocesses that do not change the state of the 
modeled system and are therefore an important property to study in Petri net analysis. 
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MCT SETS. Transitions in a Petri net can be grouped into maximal common 
transition sets (MCT sets) based on their t-invariants [Sackmannn, Heiner and Koch 
2006]. These MCT sets are disjoint subsets of transitions and divide the net structure 
into subnets, each corresponding to a functional module of the modeled system. Such  
a set includes transitions that are part of exactly the same t-invariant supports.  

More formally, ⋁ ⋁ �𝑡𝑡𝑖𝑖 ∈ 𝑚𝑚 ∧ 𝑡𝑡𝑗𝑗 ∈ 𝑚𝑚� ⟺ ⋁ ��𝑡𝑡𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑥𝑥) ∧𝑥𝑥∈𝑋𝑋𝑡𝑡𝑖𝑖,𝑡𝑡𝑗𝑗∈𝑇𝑇𝑚𝑚∈𝑀𝑀

𝑡𝑡𝑗𝑗 ∈ 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑥𝑥)� ∨ �𝑡𝑡𝑖𝑖 ∉ 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑥𝑥) ∧ 𝑡𝑡𝑗𝑗 ∉ 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝(𝑥𝑥)��, where 𝑋𝑋 is the set of all  
t-invariants, while 𝑀𝑀 is a collection of all MCT sets [Formanowicz et al. 2022]. 

Trivial MCT sets containing only one transition are not considered in the 
analysis. Notably, an MCT set may not necessarily induce a connected subnet, 
meaning that there may not exist a path containing exactly one place connecting each 
transition in the set. If an MCT set contains a transition for which such a path does 
not exist, it induces a non-connected subnet.  

The presented analysis excludes trivial MCT sets and mentions an example of 
a non-connected subnet in the Results and Discussion section. 

KNOCKOUT ANALYSIS. One important type of Petri net model analysis involves 
disabling certain parts of the model and studying the behavior of the remaining parts. 
This approach is known as knockout analysis, which can be classified into two types: 
t-invariant-based knockout and simulation knockout. In t-invariant-based knockout, 
selected transitions are disabled, removing certain t-invariants, and the remaining  
t-invariants are analyzed. This type of analysis enables the identification of  
the subprocesses affected by the knockout of particular elementary processes  
(i.e., transitions).  

On the other hand, in simulation knockout, selected transitions are knocked out, 
and the token distribution over a set of places is observed using net simulation.  
This involves running a series of simulations starting from the same initial token 
distribution and ending after a specified number of steps. Through knockout analysis, 
the influence of specific elementary processes (represented by transitions or subsets 
of transitions) on the behavior of the Petri net can be studied [Grunwald et al. 2008; 
Formanowicz et al. 2020a,b]. 

2.2. The non-enzymatic RNA degradation phenomena that was taken  
into account when building the model 

RNA molecules are crucial in numerous cellular processes, and their functionality is 
highly dependent on their hierarchical structure. The primary structure of an RNA is 
a sequence over the {A,C,G,U} alphabet, where each letter represents a nucleotide 
(A = adenine, C = cytosine, G = guanine and U = uracil) and the nucleotides are 
linked by phosphodiester bonds. As RNA folds back onto itself, complementary 
bases pair up, leading to the formation of its secondary structure. As a result,  
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RNA can adopt both single-stranded and double-stranded forms, which results in  
a diverse array of secondary structure elements, such as stems, hairpins, bulges, etc. 
These elements of the secondary structure are capable of interacting with one 
another, giving rise to more complex tertiary structures [Rybarczyk et al. 2016, Deng 
et al. 2023]. 

Here, a mathematical model based on Petri‘s net theory is presented, proposed 
and developed by the author of this paper. The model simulates the process of non-
enzymatic RNA structure-driven spontaneous degradation according to a description 
of biochemical experiments [Kierzek 2001; Blazewicz et al. 2011; Rybarczyk et al. 
2017].  

Their findings indicated that short RNA molecules (oligoribonucleotides) can 
be specifically and quantitatively cleaved, even in the absence of protein enzymes. 
They noted that this process is dependent on the structure of the RNA molecule, and 
the cleavage tends to occur within single-stranded RNA fragments. The presence of 
labile phosphodiester bonds  is crucial for hydrolysis to occur. It was noted that only 
the phosphodiester bonds between CA, CC, UA, and UC underwent hydrolysis at 
significant rates. Among these, the bonds between CA and UA were 3 to 5 times 
more prone to cleavage compared to those between CC and UC. Additionally, the 
sequences UC, CG, CU, UG, and UU exhibited at least 20 times greater stability 
than CA, CC, UA, and UC. Under the conditions applied, the phosphodiester bonds 
AA, AC, AG, AU, GA, GC, GG, and GU remained consistently stable [Kierzek 
2001]. 

Furthermore, studies have demonstrated that the non-enzymatic RNA 
hydrolysis process is significantly influenced by not only the primary structure but 
also the secondary and tertiary structure of the substrate [Bibillo et al. 2000; Kierzek 
2001]. 

The exact branch and cut algorithm is described [Rybarczyk et al. 2016], which 
predicts the stability of RNA molecules based on the RNA sequence and 
internucleotide bond stability rules proposed by Kierzek et al. [Kierzek 2001] and 
also operates in a similar manner. 

3.  RESULTS AND DISCUSSION  

3.1. Model presentation  

The proposed model was created using the Holmes tool [Radom et al. 2017], and its 
structure is shown in Figure 1. The net consists of seven places and 12 transitions, 
whose numbers and assigned names are described in Tables 1 and 2, respectively.  
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Fig. 1.  The Petri net-based model of non-enzymatic RNA degradation. The places  
and transitions are represented by their numbers 

Source: own study. 
 

Table 1. List of places and their biological meaning 

Source: own study. 
 

The model presented above does not take into account quantitative information 
but only describes the structure of the system under consideration, making it  
a qualitative (classical) model. Due to the availability of approximate quantitative 
information on the stability of internucleotide bonds in the RNA molecule,  
a stochastic Petri net was used as an extension of the discussed model. To do this, 
the firing rates of each transition had to be estimated. 

 

Place Biological meaning Place Biological meaning 

p0 RNA molecule in the solution  p4 Recognized cleavage sites  
in single-stranded regions 

p1 RNA having a spatial structure p5 The resulting degradants 

p2 Recognized single-stranded regions p6 Fragments longer than  
20 nucleotides 

p3 RNA fragments resulting from 
degradation 
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Table 2. List of transitions and their biological meaning 

Source: own study. 
 

Transitions corresponding to cleavages between individual internucleotide 
bonds (t3-t6) were assigned kinetic parameters based on defined and calculated 
degradation measures (degradation membership measures) [Rybarczyk et al. 2016]. 
Cleavage sites with identical degradation measures were grouped and represented as 
single transitions in the model. The designated values are as follows: 0.953 for the 
cleavage site UA (t3), 0.932 for CA (t4), 0.846 for CC, UC (t5), and 0.1 for CG, CU, 
UG and UU (t6) [Rybarczyk et al. 2016] (c.f. Tab. 4). 
 

Table 3. The model's components are assigned approximate durations and time intervals 
(as indicated in the Time Information Coming from the Available Literature and Time Interval 

columns), since precise time values for the modelled processes are unavailable  
in the literature. To capture the time dependencies between the processes,  

we used a scale of 1 to 100 (as shown in the Duration column) 

Source: own study. 

Transition Biological meaning Transition Biological meaning 

t0 RNA molecule placed in the 
solution  

t6 Cleavage between nucleotides CG, 
CU, UG, UU 

t1 RNA folding t7 Recognition of cleavage sites in 
single-stranded regions 

t2 Identification of single-stranded 
regions in the RNA structure 

t8 Folding of the resulting single-
stranded RNA fragments 

t3 Cleavage between nucleotides 
UA  

t9 Degradants usage 

t4 Cleavage between nucleotides 
CA 

t10 Determination of the length of the 
resulting fragments 

t5 Cleavage between nucleotides 
CC, UC 

t11 No allowable cleavage sites are 
present 

Process Duration Time Information Coming 
from the Available Literature 

Time 
Interval 

Determination of the length of the 
resulting fragments 

1  Seconds [Rybarczyk et al. 2016] Very 
short 

Adoption by an RNA molecule, its spatial 
structure (folding), recognition of single-
stranded regions in the RNA structure, 
and the locations of cleavage sites 

10 Seconds to a minute [Rybarczyk 
et al. 2016] 

Short 

Use of degradants 80 Minutes [Watson 2012] Medium 

Hydrolysis between nucleotides other 
than CA, CC, CG, CU, UA, UC, UG or UU 

100  > Half an hour Long 
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For the remaining transitions, a heuristic [Formanowicz, Rybarczyk and 

Formanowicz 2018] was used to estimate their kinetic parameters. Due to the lack 
of precise data regarding the duration of the reactions/processes represented by these 
transitions, four constant values approximating these durations (on a scale of 1–100) 
were used and presented in Table 3. The firing rates for transitions were calculated 
as the inverse of the previously estimated constants (c.f. Tab. 4). 

 
Table 4. The rate functions for the analysed model are presented as a list, where MA(c) 

represents the mass action function [Heiner et al. 2009]. The kinetic parameter  
(rate constant) is denoted by 'c' and measured in sec−1 units. Snoopy [Heiner et al. 2012] 

provides a predefined function, MA, which generates the rate function for a specific 
transition using input places and a kinetic parameter as an argument 

Source: own study. 

3.2. Formal analysis of the model 

The structural analysis of the presented model was performed using Holmes software 
[Radom et al. 2017]. Due to the structural properties of the network, the considered 
network is pure since it does not have any read arcs (i.e., arcs going in both directions 
between a place and a transition). Additionally, it is ordinary (and thus 
homogeneous) since the weight of each arc is equal to 1. The network is also 
connected, as it is a directed connected graph, but it is not strongly connected. 
Furthermore, it is not structurally conflict-free, as there are transitions that have 
common input places, and it is not conservative and bounded, as there is an input 
transition without predecessors and an output transition without successors. 

The net is covered by 5 t-invariants, whose characteristics are included in Table 
5, and it does not contain any minimal p-invariants. In the presented model, there are 
5 MCT sets, see Table 6. 

Transition Kinetic 
Parameter, c 

Rate Function Transition Kinetic 
Parameter, c 

Rate Function 

t0 0.0125 MA(0.0125) t6 0.1 MA(0.1) 

t1 0.1 MA(0.1) t7 0.1 MA(0.1) 

t2 0.1 MA(0.1) t8 0.1 MA(0.1) 

t3 0.953 MA(0.953) t9 0.0125 MA(0.0125) 

t4 0.932 MA(0.932) t10 0.1 MA(0.1) 

t5 0.846 MA(0.846) t11 0.01 MA(0.01) 
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Table 5. The list of t-invariants and their biological meaning. The second column displays  
all transitions belonging to the support of t-invariants listed in the first column, whereas  

the third column lists which transitions are contained in the MCT-sets 

Source: own study. 
 

Table 6. The list of MCT sets and their biological meaning 

Source: own study. 

In analysing Figure 1, one can notice that the sets m1 and m2 are closely related. 
The reason why they are not a single MCT set is the presence of a cycle in the 
analysed model (𝑝𝑝1 → 𝑡𝑡2 → 𝑝𝑝2 → 𝑡𝑡7 → 𝑝𝑝4 → 𝑡𝑡3 (𝑜𝑜𝑜𝑜 𝑡𝑡4 , 𝑡𝑡5, 𝑡𝑡6) → 𝑝𝑝3 → 𝑡𝑡10 → 𝑝𝑝6 →
𝑡𝑡8 → 𝑝𝑝1), which causes transitions from the m2 set, which are part of the cycle, to be 
activated more frequently than transitions from the m1 set. This is because the token 

t-
invariant 

Involved 
transitions 

Involved 
transitions  

as contained  
in MCT sets 

 

MCT 
sets 

Single 
transitio

ns 

Biological meaning 

x1 t2, t3, t7, t8, t9, t10 m2, 
m3 

t3 Formation of degradants resulting from  
the hydrolysis of RNA fragments in single-stranded 
regions between UA nucleotides 

x2 t2, t4, t7, t8, t9, t10 m2, 
m3 

t4 Formation of degradants resulting from  
the hydrolysis of RNA fragments in single-stranded 
regions between CA nucleotides 

x3 t2, t5, t7, t8, t9, t10 m2, 
m3 

t5 Formation of degradants resulting from  
the hydrolysis of RNA fragments in single-stranded 
regions between CC, UC nucleotides 

x4 t2, t6, t7, t8, t9, t10 m2, 
m3 

t6 Formation of degradants resulting from  
the hydrolysis of RNA fragments in single-stranded 
regions between CG, CU, UG and UU nucleotides 

x5 t0, t1, t2, t7, t9, t11 m1, 
m2 

 Formation of degradants resulting from  
the hydrolysis of RNA fragments in single-stranded 
regions between nucleotides other than CA, CC, 
CG, CU, UA, UC, UG, UU 

MCT set Contained 
transitions 

Biological meaning 

m1 t0,  t1,  t11 The  process of acquiring spatial structure by the input RNA 
molecule 

m2 t2,  t7,  t9 The process of identifying cleavage sites in the single-stranded 
regions of RNA fragments resulting from the degradation of the 
input RNA molecule 

m3 t8,  t10 The process of folding of RNA fragments resulting from the 
degradation of the input RNA molecule 
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introduced by the input transition t0 can remain in the cycle, causing the activation 
of transitions from the m3 and m2 sets each time it passes through it (t9 is always 
activated because t10 produces a token in place p6, reintroducing it into the cycle, and 
in place p5, where it will be removed from the network by the output transition t9), 
or it can be directly removed from the network by activating transitions from the m1 
and m2 sets (𝑡𝑡0 → 𝑝𝑝0 → 𝑡𝑡1 → 𝑝𝑝1 → 𝑡𝑡2 → 𝑝𝑝2 → 𝑡𝑡7 → 𝑝𝑝4 → 𝑡𝑡11 → 𝑝𝑝5 → 𝑡𝑡9). 

3.3. Stochastic simulation and knockout based analysis 

To provide a fuller description of the dependencies present in the analysed model,  
a knockout analysis based on the set of t-invariants was performed using MonaLisa 
software [Einloft et al. 2013]. Initially, each MCT set (including also trivial ones, 
such as single transitions) was subjected to a knockout process to evaluate the 
importance of every functional biological unit in the model. For each MCT set that 
underwent knockout, the specific transitions that would become inactive were 
calculated. The outcomes of these calculations, including the number of transitions 
affected by each knockout, are presented in Table 7. 

 
Table 7. Based on the method outlined in [Grunwald et al. 2008; Formanowicz et al. 

2020a,b], the activities with the greatest impact on the model as a result  
of combinatorial knockout were determined 

Source: own study. 
 

Table 7 shows that the exclusion of transitions belonging to the set m2 has  
a significant impact on the modelled system. Transitions from this set are present in 
the supports of all computed t-invariants (c.f. Tab. 5). As a result of excluding these 
transitions, the process of non-enzymatic RNA degradation does not occur. 

The degradation of RNA into functional degradation products requires the 
fragmented RNA to undergo structural degradation. Knocking out transitions from 
set m3, which belong to 4 out of 5 supports of t-invariants (c.f. Tab. 5), leading to the 
inhibition of this process (see Fig. 2A). 

MCT 
set 

Biological meaning Knockout Impact 
(Transitions) [%] 

Knockout Impact 
(t-Invariants) [%] 

m2 The process of identifying cleavage sites  
in the single-stranded regions of RNA 
fragments resulting from the degradation  
of the input RNA molecule 

91.67 100 

m3 The process of folding of RNA fragments 
resulting from the degradation of the input 
RNA molecule 

41.67 80 

m1 The  process of acquiring spatial structure  
by the input RNA molecule 

16.67 20 
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Fig. 2. Graphical representation of the t-invariant-based knockout impact: A. of the m3,  

B. of the m1. The crossed-out black circles indicate knocked-out transitions, while transitions 
that belong to the support of any t-invariant are represented as filled green rectangles,  

with a number inside indicating the number of supports of t-invariants to which the transition 
belongs. The red rectangles represent transitions that do not belong to the support  

of any t-invariant. The results were generated using the Holmes software  
[Radom et al. 2017] 

Source: own study. 
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Similarly, acquiring spatial structure by the input RNA molecule is crucial for 
further non-enzymatic RNA degradation and obtaining final degradation products. 
Blocking transitions from set m1 should hinder this process. However, the analysis 
of the results presented in Table 7 does not indicate this (4 t-invariants can still be 
executed, and all transitions not belonging to set m1 remain active). Further analysis 
using the Holmes tool [Radom et al. 2017] unequivocally indicates that none of  
the remaining t-invariants can be executed since the only input transition of model  
t0 (placing RNA molecule in the solution) has been blocked (see Fig. 2B and 3).  
In this case, non-enzymatic RNA degradation will not occur. 
 

 
Fig. 3. Graphical representation of the knockout results for the entire model, upon disabling 

of the transitions belonging to m1. Inactive transitions are shown as red circles.  
The degree of activity change is represented by the level of filling, where partially filled 

indicates decreased activity, and fully filled indicates unchanged activity compared  
to the reference set. Holmes software was utilized for the results [Radom et al. 2017] 

Source: own study. 
 
The next step was to conduct a simulation analysis using the Gillespie stochastic 

simulation algorithm (SSA) [Gillespie 1977] implemented in the Snoopy software 
[Heiner et al. 2012]. During the simulation, the number of algorithm steps was set to 
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100 000, while the results are the average of 50 000 runs [Formanowicz, Rybarczyk 
and Formanowicz 2018]. 

In the biochemical experiments presented in Kierzek [2001], it was observed 
that the internucleotide bonds in RNA molecules exhibit varying susceptibilities to 
cleavage. The least stable bonds are those between UA, followed by CA. Bonds 
between CC, UC are hydrolysed more slowly, while bonds between CG, CU, UG 
and UU are the most stable. These dependencies were described through degradation 
measures defined and calculated in Rybarczyk et al. [2016]. These values were 
assigned to transitions corresponding to cleavages between individual inter-
nucleotide bonds in the model as their firing rates. 

The results of the simulation presented in Figure 4 demonstrate that the 
relationships regarding the susceptibility to non-enzymatic hydrolysis of the bonds 
connecting individual nucleotides in the RNA chain have been preserved 
(UA>CA>(CC, UC)>(CG,UG)>(CU, UU)). 

 
Fig. 4. The results of in silico knockout analysis for transitions: t3, t4, t5, t6. t3. Simulation  

for the transition t3. t4. Simulation for the transition t4. t5. Simulation for the transition t5. t6. 
Simulation for the transition t6 

Source: own study. 

4.  CONCLUSIONS   

In this work, a mathematical model based on the theory of Petri nets was presented, 
illustrating the course of the process of non-enzymatic RNA degradation, taking into 
account the spatial structure of RNA, as well as the stability rules proposed by 
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Kierzek and colleagues (the algorithm presented by Rybarczyk et al. [2016] 
functions similarly) and based on a biochemical experiment described by Rybarczyk 
et al. [2016; 2017]. 

The analysis of the model was based primarily on the knockout analysis based 
on a set of t-invariants. This allowed for determining the impact of individual 
processes represented in the model in the course of non-enzymatic RNA degradation. 

Next, a simulation analysis of the considered stochastic network was carried 
out. Transitions corresponding to cleavages between individual nucleotides in the 
RNA chain were assigned firing rates based on degradation measures defined and 
calculated in [Rybarczyk et al. 2016]. The results of the stochastic simulation showed 
that the dependencies related to susceptibility to non-enzymatic hydrolysis of 
internucleotide bonds in the RNA molecule were preserved (UA>CA>(CC, 
UC)>(CG, UG)>(CU, UU)). 
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