WORN-OUT STEAM TURBINE BODY OVERHAUL TECHNOLOGY

Agata Wieczorska
Gdynia Maritime University, Faculty of Marine Engineering, Department of Ship Materials and Overhaul Technology, Morska 81-87, 81–581 Gdynia, Poland
ORCID 0000-0002-6196-7915
e-mail: a.wieczorska@wm.umg.edu.pl

Abstract: The article presents the technology of overhauling a steam turbine body after prolonged operation at high temperatures. Before any repairs are made to such a body, preliminary material tests must be carried out, which will qualify it for scrapping or a revitalisation process, because the material undergoes degradation at creep temperatures. The purpose of the overhaul was to restore the steam turbine body (material grade L20HM) to operational condition.

Keywords: technology of repair, operation, steam turbine body.

1. INTRODUCTION

During operation, steam turbine bodies are loaded with very high forces, the source of which are [Dobosiewicz 1992; Cwilewicz and Perepeczko 2014]:
• working medium temperature;
• working medium pressure;
• weight of the entire turbine unit;
• vibrations, which result from the rotating mass of the turbine and from the steam flow.

The differences between steam temperatures at entry and exit from individual parts of the turbine introduce very high stresses in the material. However, the critical points in turbine operation are moments when the turbine winds down or is reactivated, when the individual parameters increase rapidly and cause deformations and thermal stresses. These conditions result in fatigue cracks in the material, while continuous turbine operation leads to creeping cracks [Dobosiewicz 1992; Cwilewicz and Perepeczko 2014].
2. SCOPE OF THE STUDY

The paper discusses the individual stages of the scope of testing, which prepare the steam turbine body for overhaul.

The repair process comprises a range of operations involving:

a) comprehensive assessment of the technical condition of the body, based on:
 • defectoscopic testing (100% internal and external surfaces) for sand or shot blasting (visual and magnetic particle inspections),
 • destructive material testing (microstructure, hardness, impact strength, etc.),
 • geometry measurements,
 • calculation of durability depletion level;

b) removal of surface cracks and rebuilding of damaged locations using a weld metal with a composition similar to the original cast material;

c) thermal treatment of the body in a furnace for the purpose of:
 • removing welding stresses,
 • removing post-operation stresses,
 • correcting the geometry,
 • regenerating the structure to a degree enabling its plastic properties to be improved;

d) mechanical processing of all planes and bores that require certification;

e) thread regeneration.

The external body of a steam turbine manufactured by Zakłady Mechaniczne ZAMECH, Elbląg, Poland, comprised an upper and lower part in the form of a steel casting using grade G20Mo5 (L20HM) steel. According to data provided by EDF WYBRZEŻE [Wieczorska 2018]:

- the turbine was commissioned in 1980;
- body operation time until the current overhaul was 232,658 hours;
- the number of activations since the last overhaul (in 2008) until the current overhaul, a total from various states, was 82.

Based on the number of turbine activations during the period 2008–2017, as stated by EDF WYBRZEŻE, the number of turbine activations since the beginning of its operation until the current overhaul was estimated. The total number activations from different states was approximately 370 [Wieczorska 2018].

The chemical composition and mechanical properties of the analysed G20Mo5 (L20HM) cast steel are shown in Table 1.
Table 1. Chemical composition and mechanical properties of turbine body G20Mo5 cast steel

<table>
<thead>
<tr>
<th></th>
<th>L20HM according to PN-H-83157:1989</th>
<th>G20Mo5 according to EN 10213 current standard PN-EN 10213+A1:2016-08</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_e [MPa]</td>
<td>245</td>
<td>420-480</td>
</tr>
<tr>
<td>R_m [MPa]</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>A [%]</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>KV [J]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.15–0.23</td>
<td>0.4–0.7</td>
</tr>
<tr>
<td>Cr</td>
<td>0.4–0.7</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>0.4–0.6</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.5–1.0</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0.020</td>
<td></td>
</tr>
</tbody>
</table>

The body was delivered for overhaul disassembled, on two different dates. Figure 1 shows the lower part of the body after disassembly, condition as delivered.

![Image](2017/05/30)

Fig.1. Body of WP steam turbine for EC Gdynia TG1 as delivered after disassembly, lower part

3. STEAM TURBINE REPAIR PROCESS

After cleaning the body (both the upper and lower parts) by sand blasting, surface inspection was performed first using the magnetic particle method on 100% of the cast’s surface.
On the upper part, 29 readings were found, and 25 on the lower part. All cracks detected were qualified for removal by milling, the recess locations were tested again using the magnetic particle method to ensure that this operation was performed properly, as all defects had to be removed until healthy material was reached [Wieczorska 2018].

![Fig. 2. Marked cracks detected during the first (preliminary) magnetic particle inspection of the upper hull part](image)

The next step was to prepare a DDRD (defects, discontinuities – repair decisions) document. The document contains the discontinuity (defect, crack) number, crack type and discontinuity dimensions, and the method of defect removal by spreading or welding is specified. Once defects are removed by milling, the defects are measured using a slide calliper and their width, length and depth are recorded. Based on these dimensions, the repair decision is taken.

Following the magnetic particle inspection, destructive testing was performed, which included: metallographic testing of the material’s microstructure, impact strength and hardness testing. All of these tests were performed on trepanation samples taken from the entire thickness of the body wall in the hot area and cold area, which were numbered consecutively:

- for the upper part – 1UH (from the hot area) and 2UC (cold area);
- for the lower part – 3LH (from the hot area) and 4LC (cold area).

Samples for strength and microstructure testing from the hot areas in the upper and lower parts of the body were taken with a trepanning tool, and cold area samples were cut out [Wieczorska 2018].
Following the sampling, the samples were transferred to the laboratory and tested.

The testing scope included:
- hardness measurements;
- impact strength test;
- static tensile strength test at ambient temperature;
- metallographic tests.
The scope of testing, equipment used and test documentation is shown in Table 2.

Table 2. Test methods, test equipment, standards

<table>
<thead>
<tr>
<th>No.</th>
<th>Test method</th>
<th>Test equipment</th>
<th>Testing conditions</th>
<th>Testing standards and instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microscopic</td>
<td>Axioscope</td>
<td>zoom x100, 500, 1000 Etch Mi1Fe</td>
<td>MT/I-101 issue 4 of 22-01-2016</td>
</tr>
<tr>
<td>2</td>
<td>Vickers hardness test</td>
<td>Zwick 3212</td>
<td>Load 98,1 N</td>
<td>PN-EN ISO 6507-1:2007</td>
</tr>
<tr>
<td>3</td>
<td>Impact strength test</td>
<td>Zwick 5111</td>
<td>Temp. 23°C V-notch</td>
<td>PN-EN ISO 148-1:2010</td>
</tr>
<tr>
<td>4</td>
<td>Static tensile strength test</td>
<td>Zwick 250</td>
<td>Temp. 23°C 10x10 mm</td>
<td>PN-EN ISO 6892-1:2010</td>
</tr>
<tr>
<td>5</td>
<td>Microscopic</td>
<td>JSM 35c</td>
<td>zoom x100, x500</td>
<td>MT/I-101 issue 4 of 22-01-2016</td>
</tr>
</tbody>
</table>

The hardness of the samples from the upper and lower parts of the body was measured using the Vickers method. The results are shown in Table 3.

Table 3. Results of hardness measurements, Charpy V impact energy tests, and static tensile test for post-operational state of body material

<table>
<thead>
<tr>
<th>Area</th>
<th>Sample no.</th>
<th>HV10 Hardness</th>
<th>Rm [MPa]</th>
<th>ReH [MPa]</th>
<th>KV [J]</th>
<th>Z [%]</th>
<th>A [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>1UH</td>
<td>160</td>
<td>508</td>
<td>277</td>
<td>9</td>
<td>58</td>
<td>28.9</td>
</tr>
<tr>
<td>hot</td>
<td>3LH</td>
<td>155</td>
<td>500</td>
<td>311</td>
<td>8</td>
<td>60</td>
<td>22.5</td>
</tr>
<tr>
<td>cold</td>
<td>2UC</td>
<td>167</td>
<td>511</td>
<td>324</td>
<td>17</td>
<td>61</td>
<td>24.7</td>
</tr>
<tr>
<td>cold</td>
<td>4LC</td>
<td>151</td>
<td>505</td>
<td>318</td>
<td>14</td>
<td>63</td>
<td>25.5</td>
</tr>
</tbody>
</table>

The first stage of the steam turbine repair process is a special heat treatment intended to dissolve carbides and enable repair by welding. However, before this stage was performed, both halves of the body had to be bolted together and braced, which was intended to protect the cast from major deformations during the heat treatment, as shown in Figure 6.

An equally important element is reboring the threads in the connection flanges, with the rebored holes subsequently being welded together as per the welding instruction. Small threads are destroyed during the heat treatment (the tips of the thread crests are burned), threaded holes as per design figure dimensions cannot be prepared during the calibration process, to this end, the rebored sites...
must be welded, and once the heat treatment is complete, the threads should be recreated according to design dimensions [Trzeszczyński and Grzesiczek 1998; Wieczorska 2018].

Fig. 6. Body preparation for heat treatment

The purpose of the special heat treatment is to:
• remove post-operation changes in the microstructure, e.g. by dissolving carbides;
• achieve the microstructure of tempered bainite with adequate impact strength;
• enable proper performance of welding repairs in material recesses and post-operation cracks [Rehmus-Forc 2016].

Hardening was conducted by heating the material to the temperature at which austenitisation occurs, then annealing it at this temperature, followed by cooling to achieve non-equilibrium structures — martensite, bainite, or a mixture thereof. To achieve the right results of hardening, the parameters of this treatment must be determined, which includes the austenitisation temperature, holding time and cooling rate. Heating to the austenitisation temperature is performed gradually, preventing excessive temperature differences [Cicholska and Czechowski 2013].

The body heating rate was 50°C/h. The first stop occurs at 650°C, after which the temperature again rises at a rate of 50°C/h until the austenitisation temperature of 970°C is reached. Following the hardening, the steam turbine body was cooled by a flow of air, then subjected to tempering to reduce stresses and obtain the right mechanical properties, i.e. to restore the material’s plastic deformation ability. The steam turbine body was subjected to the process of high tempering to achieve as high an impact strength as possible while maintaining sufficient tensile strength. The heating rate was 60°C/h until a temperature of 620°C was reached, then the body was cooled in air [Wieczorska 2018].

Following the heat improvement, magnetic particle tests were performed, during which single cracks were detected. During the magnetic particle tests, the same acceptance criteria applied as during the initial tests. Defects (cracks) were
found and marked on the upper and lower parts of the body, which were subsequently qualified for removal by mechanical processing. Once the material layers containing the marked defects were removed and the recesses were measured, it was decided to repair these areas by welding. Following the repair of the cast steel body of the steam turbine, mechanical and metallographic tests identical as for the post-operation body testing scope were performed. The results are presented in Table 4.

Table 4. Results of hardness measurements, Charpy V impact energy tests, and static tensile test after revitalisation of cast steel steam turbine

<table>
<thead>
<tr>
<th>Area</th>
<th>Sample no.</th>
<th>HV10 Hardness</th>
<th>Rm [MPa]</th>
<th>ReH [MPa]</th>
<th>KV [J]</th>
<th>Z [%]</th>
<th>A [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>11UH</td>
<td>155</td>
<td>519</td>
<td>342</td>
<td>70</td>
<td>63</td>
<td>24.6</td>
</tr>
<tr>
<td>hot</td>
<td>13LH</td>
<td>151</td>
<td>511</td>
<td>351</td>
<td>95</td>
<td>69</td>
<td>25.3</td>
</tr>
<tr>
<td>cold</td>
<td>12UC</td>
<td>152</td>
<td>509</td>
<td>346</td>
<td>59</td>
<td>70</td>
<td>28.4</td>
</tr>
<tr>
<td>cold</td>
<td>14LC</td>
<td>159</td>
<td>526</td>
<td>364</td>
<td>64</td>
<td>64</td>
<td>23.8</td>
</tr>
</tbody>
</table>

4. WELDING TECHNOLOGY

Welding repairs of the locations with removed cracks were performed in accordance with the prepared welding instruction.

Table 5 shows the chemical composition of the filler used, which was produced by BÖHLER.

Table 5. Chemical composition of filler

<table>
<thead>
<tr>
<th>Filler name</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>Mo</th>
<th>P</th>
<th>As</th>
<th>Sb</th>
<th>Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCMS-IG</td>
<td>0.11</td>
<td>0.6</td>
<td>1.0</td>
<td>1.2</td>
<td>0.5</td>
<td>0.012</td>
<td>0.010</td>
<td>0.005</td>
<td>0.006</td>
</tr>
</tbody>
</table>

The prepared technology assumes:

WPS (welding procedure specification) – MAG welding method, with DCMS-IG wire used as filler, the material must be pre-heated to 200°C using a gas burner before rebuilding begins, the interpass temperature must exceed 400°C.

Once the welding process is complete, perform stress relief annealing by heating the cast to 670°C at a rate of 60°C/h, hold the piece at 670°C for 7 h, then cool it at a rate of 50°C/h. This technology is used as standard for the rebuilding of a recess created by removal of material discontinuities [Jaworski 2002; Wieczorska 2018].
Table 6. WPS – welding repair

<table>
<thead>
<tr>
<th>WPS</th>
<th>Welding Procedure Specification</th>
<th>Instrukcja Technologiczna Spawania</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No./Nr ME 2805/2017</td>
<td>Rev./zm. -</td>
</tr>
<tr>
<td></td>
<td>Page/strona 1</td>
<td>Pages/strony 1</td>
</tr>
</tbody>
</table>

1. **Method of preparation for welding:** machining/ washing
 Sposób przygotowania do spawania: obróbka / mycie

2. **Base material / Material podstawowy:** acc. to ISO/TR 15608
 - **pos. 1 material group:** 5.1
 - poz. 1 grupa materiałowa: 5.1
 - poz. 2 grupa materiałowa: 5.1; 1.2

3. **Thickness of material [mm]:** ≥ 25
 Grubość materiału [mm]: ≥ 25

4. **Welding position:** PA
 Pozycja spawania: PA

5. **Joint type:** BW
 Rodzaj złącza: BW

<table>
<thead>
<tr>
<th>Preparation for welding / Przygotowanie do spawania</th>
<th>Run sequence / Kolejność układania ściegów</th>
</tr>
</thead>
</table>

Current characteristics / Parametry spawania

<table>
<thead>
<tr>
<th>Run/Ścieg</th>
<th>Welding process</th>
<th>Size of filler mat. [mm]</th>
<th>Current</th>
<th>Voltag [V]</th>
<th>Type of current/Polarity</th>
<th>Wire speed [m/min]</th>
<th>Welding speed % spawania [mm/s]</th>
<th>Linear energy [kJ/mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1÷n</td>
<td>135</td>
<td>1.2</td>
<td>270÷310</td>
<td>28÷32</td>
<td>DC / “+” puls</td>
<td>9.0÷11.0</td>
<td>3.5÷6.5</td>
<td>0.930÷2.267</td>
</tr>
</tbody>
</table>

1. **Filler material / Material dodatkowy**
 - type / typ: GCrMoSi – EN
 - brand / nazwa: DCMS-IG
 - manufacturer / producent: BÖHLER

2. **Shield gas / Gaz osłonowy**
 - acc. to EN ISO 14175
 - brand / rodzaj: M21 – Ar80%+CO220%
 - velocity / przepływ: 10 + 16 l/min

3. **Forming gas / Gaz formujący**
 - brand / rodzaj: -
 - velocity / przepływ: -

4. **Brand of tungsten electrode / Size**
 - Rodzaj elektrody wolframowej / Wymiary: N/A

Preheating for welding / Podgrzewanie do spawania

- preheat temperature / temp. podgrzewania: min 200 ºC
- type of preheating / sposób podgrzewania: furnace
- interpass temperature / temp. międzyściegowa: max 400ºC

Post weld heat treatment / Obróbka cieplna po spawaniu

- type / rodzaj: stress relieving
 - heating rate / prędkość nagrzewnienia [º/h]: max. 60
 - holding temp. / temp. wytrzymania [ºC]: 670÷400ºC
 - holding time / czas wytrzymania [h]: 7 h
 - cooling rate / prędkość studzenia [º/h]: max. 50

Remarks, additional information / Uwagi, informacje dodatkowe:

Shorting arc welding, inadmissible to local overheating material. Each bead cleaned precisely. Multilayer welding.

Prepared by / Opracował
A. Wieczorska
Date / Data 05.2017

Approved by / Zatwierdził
Date / Data 05.2017

Approved by Customer / Zatwierdzenie klienta
Date / Data
The technology of plugging the holes created by taking trepanation samples for material testing of the body involves the performance of three operations:

- creating a thread in the hole left after collecting a trepanation sample;
- preparing a plug of ST460TS steel;
- screwing the plug into the hole, welding it from the external and internal surface sides, then testing the equality of the joint using the penetration method, in accordance with the welding procedure specification [Jaworski 2002; Wieczorska 2018].
5. STRESS RELIEF ANNEALING

Annealing is a heat treatment process involving heating the charge to a specific temperature, holding it at this temperature, then slowly cooling it in the air. The purpose of this treatment is to bring the material closer to equilibrium conditions [Cicholska and Czechowski 2013].

Once material recess rebuilding repairs were completed, the body halves were bolted together and strengthening elements were welded on, then the body was subjected to stress relief annealing.

Stress relief annealing involves heating steel to a temperature lower than Ac1 (usually no more than 650°C), holding it at this temperature, then gradually cooling it. Stress relief annealing is used to remove stresses without clear structural changes [Cicholska and Czechowski 2013].

The body heating rate was 57°C/h for 9 hours, then when the temperature of 670°C was reached, the holding time was 7 hours, followed by cooling at a rate of 48°C/h [Wieczorska 2018].

Once the last heat treatment, intended to remove welding stresses, was completed, non-destructive testing was performed, which included:
- magnetic particle inspection on 100% of the body area, with the acceptance criterion for raw (non-repaired) surfaces being identical as for the preliminary tests, while for any welding repair areas, no linear readings were accepted.

During this non-destructive testing, no unacceptable readings on the body surface were found [Wieczorska 2018].

6. SUMMARY

To summarise, it can be concluded that the body material structure following the repairs is identical to that created during the body production process from grade G20Mo5 (L20HM) cast steel. The impact strength of the upper and lower part is very high. The external body repair was performed correctly and restored the body’s plastic deformation ability. The impact energy on the Charpy samples with a V-notch is 59 J to 95 J, and is consistent with the ordering party’s requirements, and higher than that required by current national and industry standards. The body’s mechanical properties following the repairs are consistent with the requirements specified in standards and the expert opinion on the condition of the WP steam turbine for EC Gdynia TG1 [Wieczorska 2018]. The welding repair of locations where material layers containing cracks were removed was performed correctly. During the next scheduled overhaul of the turbine, it is recommended to inspect the condition of the body again.
REFERENCES

Cicholska, M., Czechowski, M., 2013, Materialoznawstwo okrętowe, Wydawnictwo Akademii Morskiej w Gdyni, Gdynia.