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Abstract: This short paper presents from the perspective of the operator theory some basic 

operations performed on signals in the digital signal processing as well as in the network 
calculus. These are the following operations: signal sampling, amplitude quantization, and 
signal recovery from its samples – in the digital signal processing. And regarding the 
network calculus, building up an auxiliary (continuous) traffic flow and recovery of a real 
traffic that possesses a non-continuous structure (with some granularity) after manipulations 
that were carried out with the use of a flow model are discussed in this paper. Some 
interesting results achieved and interpretations regarding the aforementioned stuff are 
presented. 

Keywords: basic operations on signals in digital signal processing and in network calculus, 

application of operator theory, inverse operators. 

1. INTRODUCTION 

In this paper, some interesting results regarding basic operations performed on 

signals in the digital signal processing [Tse and Viswanath 2005; Nurfaizey et al. 

2012] as well as in the network calculus a[Landman et al. 2008; Szabatin 2016] are 

presented. They have been derived with the use of the operator theory and deal 

with the following operations: signal sampling, amplitude quantization, and signal 

recovery from its samples in case of the digital signal processing. Furthermore, in 

the second case, they regard the building up an auxiliary (continuous) traffic flow 

and recovery of a real traffic that possesses a non-continuous structure (with some 

granularity) from that traffic, which was obtained in calculations based on the use 

of a flow model. A role played by the corresponding inverse operations and 

operators in treatment of the above stuff was highlighted. 
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2. SIGNALS IN SIGNAL PROCESSING AND IN NETWORK CALCULUS 

Signals are defined differently in signal processing and in network calculus. In both 

cases, however, their variants defined for a continuous time as well as those being 

functions of a discrete time variable are used. 

Let us start with the signals which are used in the signal processing. To this 

end, let  be a signal defined for a continuous time variable t. Further, when 

this signal has to be processed digitally, it is sampled in time and its instantaneous 

amplitude is quantized. As a result we obtain then 
 

  (1) 

where  or  means the discrete version of  (that is a one which is 

sampled in time and quantized in amplitude), n denotes an index of a sampling 

moment, while T a sampling period. Furthermore,  and  mean an operator 

performing the operation of sampling in time and an operator doing a signal 

amplitude quantization, respectively. The definition of a signal discretization 

operator  (that performs both kinds of discretization: in time and in amplitude) 

is given in the second row of (1). This is a composite operator  . 

 In this paper, the result of applying the operator  to the signal  is 

understood as a function  of a discrete time variable nT (expressed in 

short by an index n of this time moment) as illustrated in Fig. 1. Moreover, the 

following:  holds. 

 

 

 

 

 

 

 

 
 

Fig. 1. Illustration to the operation performed by the operator  

 Note that in the area of digital signal processing an operation called a “sample 

and hold” (that samples a signal in time, and holds its corresponding sampled value 

during the whole sampling period T) is also used. This operation can be modeled as 

 x t

       

         =

d d Q S

Q S D

x n x nT x t

x t x t

 



= H H

H H H

 dx n  dx nT  x t

SH QH

DH

D Q SH H H

SH  x t

   s sx nT x n

   sx nT x t nT 

SH

 sx n  

n  0  1 2  3  4  5  6  7  8  9  



 
A Note on Treatment of Signals in Digital Signal Processing and in Network Calculus 

  

Scientific Journal of Gdynia Maritime University, No. 109, March 2019 23 

 

a concatenation of two operations: a one which is a sampling in time and the 

second being a holding a sampled amplitude value. That is by the previously 

introduced operator  together with a “holding” operator , which we are 

introducing now in a descriptive way in Fig. 2. 

 
 

Fig. 2. Illustration to the operation performed by the concatenation  

of operators and 
 

 

We see from Fig. 2 that the “sample and hold” signal , defined by 
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is a signal of a continuous time variable t – in contrast to  . 

It is visualized in Fig. 2 by a blue line.  

 Always, a crucial point in the digital signal processing is recovering the 

original signal  from its discrete counterpart . That is a reconstruction of 

 provided  is given. With the use of the operator terminology introduced 

in this section, we can view the reconstruction process as searching for the inverses 

of the operators defined above. This is expressed in what follows. 

 Note that from (1) we get 

 

     (3) 

 

where  ,  and  are the corresponding inverse operators of , , 
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 . (4) 

  

 Further, introduce now an operator  that carries out a low-pass filtering of 

the signals  such that 

  (5) 

holds. And in the next step, note that by applying (2) and (4) in (5), we obtain 

  

  (6) 

 

Comparison of (6) with (3) shows that  

 . (7) 

This means that the inverse operation  recovering the signal  from its 

samples  can be realized as a composite operation comprising of 

“holding a sampled signal amplitude” and low pass filtering operations. As we 

know, in such a way, it is realized in practice. 

 Theory and practice show that there are cases when the aforementioned 

inverse operators  and  as well as the composite one  are ill-defined 

or do not exist. Then, where appropriate, they can be replaced by some kind of 

pseudo-inverses associated with them. However, this is a topic, in fact, for another 

paper and because of this not discussed here. 

 Let us consider the above problem in more detail and start our discussion with 

the reverse quantization operator . To this end, note that according to the 

Widrow’s linear quantization model we can write 

  , (8) 

where  means an error signal to the sampled signal . Further, it is 

assumed in the Widrows’s model that the error signal represents a stochastic 

process with a uniform distribution. Furthermore, because of the form of (8) this 

model is called an additive one. 

 Now, note that comparison of (8) with (4) allows us to write 
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  (9) 

which at the same time gives us the definition of the reverse operator . 

Obviously, because of the nature of its component  it is a stochastic operator. 

And by virtue of this, it is not able to recover the deterministic values  

provided the  ones are given. 

 So, because of the above reason the problem of the reversibility of the 

operator  was defined in the literature in another way. First of all, it has been 

limited to consideration of the stochastic signals  only what means, by virtue 

of this assumption, that the values of  in (9) are random in this case. So, in 

this context, the problem was formulated as searching for conditions under which 

the probability density function (PDF) of a random variable  with t fixed can 

be fully recovered from their corresponding random variable . Additionally, it 

has been also assumed that the PDFs of all the random variables  or 

for different values of t or nT are the same. With this, the problem stated above was 

reduced to consideration of the recoverability of only one random variable, say X 

or . And this was not done in the literature [Zoelzer 2008] in a direct way, but 

by exploiting the so-called characteristic functions of the PDFs of the random 

variables X or  and its discrete  counterpart. 

 Let us denote these characteristic functions, similarly as  and . 

Further, we recall also here that they are the Fourier transforms (more precisely, 

the inverse Fourier transforms) of the PDFs of the corresponding random variables. 

That is they are given by the following relations 

  (10a) 

and 

 , (10b) 

respectively. In (10a) and (10b),  and  are the PDFs of the random 

variables X and , respectively. Moreover, , but the variable u is called  

a quantization frequency. Note also that from the previous assumptions it follows 

that  and as well. 

 It has been shown in [Zoelzer 2008] that the following relation 
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   , (11) 

 

holds. In (11), Q means the quantization step. 

 From (11), the so-called Widrow’s quantization theorem can be deduced.  

It says that if the value of the quantization frequency  occurring in (11) is 

greater than , where  denotes the value of the highest quantization 

frequency occurring in the characteristic function , then the spectra which 

recur periodically do not overlap. This means that then the perfect reconstruction of 

 from its quantized  is possible. 

 In summary, note that the Widrow’s quantization theorem with the relation 

(11) describe the conditions and form of the inverse operator , meant as  

a stochastic one, in terms of the characteristic functions of the random variables 

Xand . Further, observe also that in the case of assuming the signal   

to be a deterministic one, we get from (9) a deterministic approximation for  as  
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Obviously, (12) has been obtained by neglecting the so-called quantization noise 

expressed by the component  in (8) or (9). Further, (12) can be viewed as an 

approximation of the inverse operator  by its pseudo-inverse counterpart .  

 Let us now consider the inverse operators . Its existence and form are 

nicely expressed by the sampling theorem [Nurfaizey et al. 2012] and the so-called 

cardinal series (the reconstruction formula [Nurfaizey et al. 2012]). As we know 

this series or formula is expressed in the following way [Nurfaizey et al. 2012]: 
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Further, at the same time, the relation (14) constitutes a definition of the inverse 

operator . We know from the sampling theorem [Nurfaizey et al. 2012] that 

this definition is correct in the sense that it enables a perfect reconstruction of  

a signal  when this signal is a lowpass one possessing a maximal frequency 

in its spectrum that fulfills the following relation: 

 

 , (15) 

 

where  denotes the sampling frequency. 

 Let us consider now forms of signals that are used in the network calculus. 

Generally, it can be said that a so-called cumulative traffic plays a role of a signal 

we know from the signal processing. And the former means a sum of packets (bits), 

which are entering or leaving a teletraffic system in a period from 0 to t, where 0 

stands for an assumed initial moment. Further, it is clear that when t changes then 

this sum can be considered as a function of t and viewed as a kind of a teletraffic 

signal. Moreover, when this signal regards a system input it is then named an input 

traffic. In a similar way, a system’s output traffic is defined.  

For getting a cumulative teletraffic curve, we are counting bits or packets. 

Moreover, we know that any bit or packet has some length. So, let the bit or packet 

duration express in time units, say T, being just their lengths. This allows us to 

view the traffic as a function of time that has some granularity in both the value of 

its magnitude as well as in its argument t.  

This fact is illustrated in Fig. 3 by a staircase curve form of a cumulative 

traffic . 
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Fig. 3. Illustration to the natural form of a curve of the cumulative traffic  

in network calculus S(t), indicated by a black line 
and its “fluid model” approximation R(t), indicated by a blue line 

 

 The staircase form of the curve S(t), shown in Fig. 3 is a natural one. 

However, in calculations performed in the network calculus, it is oft approximated 

by a continuous function of time R(t) that is also shown in Fig. 3. The latter follows 

from applying the so-called fluid model in teletraffic modeling and analysis. 

 Observe from Fig. 3 that the function R(t) is chosen in such a way that the 

following equality: 
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holds, where n means any integer. But, at all the remaining moments, the above 

functions can differ from each other. So, the problem of getting the function  

from the values  resembles the problem of recovery of the signal  from 

the samples , which was discussed previously. It seems that one of the 

possible solutions to this problem by 

 

 , (17) 

 

where  denotes the so-called ceiling function, is not satisfactory. The author of 

this paper is going to investigate this problem in more detail as well as a related 

one, which can be formulated as follows. Let R(t) be a system’s output traffic 

obtained in calculations using this system description in terms of a fluid model by 

processing the input traffic S(t). Further, let R(t) be an output traffic of the same 
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system obtained now in another kind of calculations with the use of the staircase 

functions (natural ones for traffic systems). So, having this formulated, we can ask 

finally whether the following equalities  

 , (18) 

for any n, hold. This seems to be not obvious, it rather needs a proof. 

3. SUMMARY 

It has been shown in this paper that the operator theory can be successfully used in 

description of the interrelations existing between the basic operations performed on 

signals in the digital signal processing as well as in the network calculus. In this 

context, the two problems occurring in the network calculus, which are not yet 

satisfactory solved, have been indicated. 

A short form of this paper indicates its preliminary character. In fact, that is 

the case. The work that is reported here will be continued. Investigations are 

planned, which will aim in exploration of more efficient digital signal processing 

and network calculus algorithms exploiting the operator formulations introduced in 

this paper. Preliminary findings are very promising.  

Moreover, we hope to be able to solve some strictly theoretical problems 

occurring in the areas mentioned above with the help of the operator formalism 

introduced. The results of these endeavours will be published in the forthcoming 

papers.   
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