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Abstract: It is convenient to analyse wireless channels and links by exploiting their input-
output description. This approach relies on treating the system as a black box, whose 
behaviour can be fully described by the relationship between the input and output signals.  
In this paper, we study a relationship of the above type for linear wireless channels having 
time-dependent parameters, which also takes a multipath propagation environment into 
account. A starting point for the derivations presented here is a relationship derived in the 
literature for this type of model with the application of a single sinusoidal input signal.  
The subject of this paper is the generalization of that relationship for periodic input signals 
and then of non-periodic signals. To the best of our knowledge, the literature lacks a suitably 
convincing generalization. The derivations of this paper exploit a principle of superposition 
valid for linear systems as well as the relations existing between Fourier series and the 
Fourier integrals. The discussion is illustrated by the results of simulations performed with 
the help of the MATLAB program. 

Keywords: wireless channel, superposition principle, multipath, Fourier transform. 

1.  INTRODUCTION 

Customarily, models of the radio channels and links used in wireless system 
analyses are based on a relation that links the output and input signals. This type of 

description is referred to as an input-output description, and the resulting model as 

a black box model. 
In [Tse and Viswanath 2005] an entire section is devoted to the modelling of 

wireless channels under the convention outlined above. It demonstrates in an easy 

to understand manner, without resorting to solving Maxwell equations, how to 
obtain useful and practical models of radio channels for various configurations of 

beneficial/adverse effects of the propagation phenomena (wave reflection, 

refraction, attenuation, diffraction). The effects of various obstacle configurations 
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are analysed in the form of the resulting waves reaching the receiver. These 

comprise waves that are reflected from various obstacles that reach the receiver via 

multiple paths, i.e. with different delays. Such a channel is said to be multipath.  
In [Tse and Viswanath 2005], an equation is derived, characterising this type of 

channel based on a single sinusoidal signal x(t) = cos(2πft) input to the channel. 

This equation is as follows: 
 

   ( ) ( , )cos2 ( ( , ))i i

i

y t a f t f t f t = − , (1) 

 

where y(t) is the output signal of the channel, i.e. the received signal; i is the index 

of the consecutive constituent wave reaching the receiver, i.e. along the path with 

the index i; ai(f, t) is wave amplitude attenuation and τi(f, t) is the time delay on 
path i. Additionally in (1), t is time and f is frequency. 

 As was noted above, the correctness of equation (1) is demonstrated in [Tse 

and Viswanath 2005] only for the situation where the transmitted signal is 
a sinusoidal signal, i.e. x(t) = cos(2πft). For signals with other forms, it is only 

noted that if the relations between ai(f, t) and τi(f, t) parameters and frequency are 

ignored then the superposition principle allows formula (1) to be as follows: 
 

  ( ) ( ) ( ( ))i i

i

y t a t x t t= − , (2) 

 

where x(t) is now any input signal. The purpose of the current paper is to 

demonstrate, step by step, the validity of formula (2). 

 The superposition principle [Nurfaizey et al. 2012], as it relates to electrical 
and magnetic fields, states that if multiple field sources exist, the resulting field in  

a specific point of space is a vector sum of the fields originating from these sources 

- treated as individual sources, while for waves it is the algebraic sum of the 

individual disturbances. In the case of radio channels, the field in question is an 
electromagnetic field, described using Maxwell equations. It is also known that in  

a far field [Tse and Viswanath 2005], the electromagnetic field can be uniquely 

defined by providing only one of its constituents, e.g. electric field intensity.  
As noted above, this intensity can be determined by solving the above-mentioned 

Maxwell equations. In [Tse and Viswanath 2005], an example solution to these 

equations is quoted when stimulating the channel with a x(t) = cos(2πft) signal, 
with the following formula being given: 
 

   
( ), , cos 2 ( / )

( , , )r

f f t r c
E f t

r

    −
=u  , (3) 

 

for the polar constituent r of electric field intensity Er(.) at point u (located in the 

far field), defined by vector u with polar coordinates (θ,ψ,r). Coefficient α(.) 
defines the combined radiation characteristics of the transmitting and receiving 

antennas, while c is the speed of light in a vacuum. For convenience, this paper,  
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as did [Tse and Viswanath 2005], identifies the channel response denoted in 

formulas (1) and (2) as y(t), with electric field intensity Er(.) as in formula (3), or 

with the resultant electric field intensity at a specific point in space (an equivalent 
of equation (2)). 

The above means that if a complex input signal meets the Dirichlet conditions 

and can be represented as a sum of sinusoidal signals (xk(t) = cos(2πfkt) and 
xk(t) = sin(2πfkt) = cos(2πfkt – π/2)) at the frequencies fk, k = 1,2,3,… , then using 

the superposition principle, formula (3) can be applied to the individual 

components of this sum. The resultant electric field intensity value is then equal to 
the sum of the constituents taking the form of (3), where frequency f consecutively 

takes the values of fk, k = 1,2,3,… . The pattern outlined above will be used in the 

derivations discussed in the following sections, although to obtain a decomposition 

of the periodic signal as a sum of individual sinusoidal signals, a Fourier transform 
[Szabatin 2016], which is obvious in this case, will be used. The situation is much 

more difficult for non-periodic signals, but the literature provides certain methods 

(proposed in, for example [Landman et al. 2008]), as used here. 
The remainder of the paper is organised as follows. Section 2 provides 

a derivation of formula (2) for periodic input signals, while Section 3 discusses 

a representation of non-periodic signals, which is then used to derive the channel 
input-output relations for these signals in Section 4. The paper concludes with 

a brief summary. 

2.  DERIVATION OF INPUT-OUTPUT RELATIONS FOR PERIODIC 
SIGNALS 

As noted above, in accordance with the superposition principle, the value of 

electric field intensity at a given point in space equals the sum of the responses 

originating from individual sources. This paper analyses a radio channel between 
a single transmitting antenna and a single receiving antenna, which means 

a scenario where only a single radio signal source is present in the space. This 

means it can be treated as a point source [Tse and Viswanath 2005]. If the signal 

from this source is a periodic signal describable by a Fourier series, then its 
components (individual sinusoidal signals) can be treated as separate sources 

(emitting from the same point in space). This is the method used in this paper. It is 

also assumed that the above sources generate single sinusoidal signals reflected 
from obstacles in the communication path, which causes the occurrence of the 

multipath phenomenon [Tse and Viswanath 2005] and attenuation, before being 

ultimately summed in accordance with the superposition principle in the receiver 
with a certain delay. It is assumed that this occurs with attenuations ai(t) and delays 

τi(t) along the individual paths I, independent of the frequency [Tse and Viswanath 

2005]. 
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 Note that formula (1) can then be applied to individual sinusoidal signals 

(components of the Fourier series for the periodic signal) received in the receiver 

over the multipath radio channel, characterised by the presence of summation 
i

  

in formula (1). In this case, the variable f present in formula (1) takes the 
subsequent values of the periodic signal basic frequency. 

 These individual constituents received in the receiver, defined above, are 

denoted as: y1(t), y2(t)… They are expressed by the following equations: 
 

  

1 1

2 1 1

3 2

4 2 2

( ) ( ) cos 2 ( ( ))

( ) ( ) cos 2 ( ( )) ( ) sin 2 ( ( ))
2

( ) ( ) cos 4 ( ( ))

( ) ( ) cos 4 ( ( )) ( ) sin 4 ( ( ))
2

...  ,

i i

i

i i i i

i i

i i

i

i i i i

i i

y t a t A f t t

y t a t B f t t a t B f t t

y t a t A f t t

y t a t B f t t a t B f t t

 


   

 


   

= −

 
= − − = − 

 

= −

 
= − − = − 

 



 



 

 (4) 

 

where factors Ai and Bi, i = 1,2, ... , represent amplitudes of the corresponding 

sinusoidal signals (cos function without a phase shift and with phase shift 2 ) for 

the subsequent harmonic frequencies. 
 The resulting received signal takes the form 
 

 

( ) ( ) ( ) ( )1 2 3 4

1 1

2 2

( ) ...

( ) cos 2 ( ( )) ( ) sin 2 ( ( ))

( ) cos 4 ( ( )) ( ) sin 4 ( ( )) ...  .

i i i i

i i

i i i i

i i

y t y t y t y t y t

a t A f t t a t B f t t

a t A f t t a t B f t t

   

   

= + + + + =

= − + − +

+ − + − +

 

 

 (5) 

 

 Further note that (5) can be written as 
 

  ( )
1

( ) ( ) cos2 ( ( )) sin 2 ( ( ))  .i n i n in
i

y t a t A fn t t B fn t t   


=
= − + −   (6) 

 

As any periodic signal ( ) ( )01x t x t f= +  that meets the Dirichlet conditions can 

be decomposed into a Fourier series defined with the following formula [Szabatin 

2016] 
 

  ( )0 0 01
( ) cos 2 sin 2n nn

x t A A f nt B f nt 


=
= + + , (7a) 
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 ( ) ( )( )0 0 01
( ( )) cos 2 ( ) sin 2 ( )i n i n in

x t t A A f n t t B f n t t    


=
− = + − + − , (7b) 

 

where 
0f  means the fundamental frequency, while 

0A  is the constant component in 

the above trigonometric series, and by substituting (7b) into (6) and assuming that 

A0 = 0, the result is 
 

 ( ) ( ) ( ( ))i i

i

y t a t x t t= −  . (8) 

 

Note: in the above derivation, frequency f is identified with frequency 
0f . 

Now observe that formula (8) is identical to formula (2). It is therefore 

demonstrated that the latter is indeed correct for periodic signals. It now only needs 
to be demonstrated further that it is also valid for aperiodic, i.e. any, signals. This 

issue is analysed in the two following sections. 

A note on the assumption A0 = 0 made above: due to the band selectivity of 

radio signals used in radio communications, the assumption is fully valid. 
 

3.  REPRESENTATION OF APERIODIC SIGNALS 

In Section 2 it was demonstrated that formula (2) is fulfilled for periodic signals. In 
order for it to be valid for any signal, its correctness for aperiodic signals needs to 

be demonstrated as well. We use the derivations presented in Section 2. We will 

also take advantage of approximation, with the required accuracy, of signals in any 

form using a sum of sinusoidal signals with frequencies that are multiples of  
a certain fundamental frequency, i.e. using a Fourier series. 

In this section we will handle the latter issue in greater detail. Let us try to find 

a connection between periodic and aperiodic signal representation based on the 
assumption available in [Landman et al. 2008], i.e. find an answer to the question if 

aperiodic signals can, under certain conditions, be treated as if they were periodic? 

This would enable us to apply the reasoning from Section 2 to aperiodic signal 
analysis and to generalise formula (2). 

The analysis presented below will identify three signals related to each other: 

x0(t), x1(t) and x2(t). 

Let us begin with signal x1(t). This is how any aperiodic signal will be 
denoted. As in [Szabatin 2016], it can be analysed using the Fourier transform 

defined as follows: 
 

 

( ) ( ) 2

1 ,j ftx t X f e df



−

= 
 (9a) 
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( ) ( ) 2

1

j ftX f x t e dt



−

−

= 
, (9b) 

 

where X(f) is an image within the frequency domain of signal x1(t). 

 Let signal x0(t) mean a signal created on the basis of the signal x1(t) derived 
previously by cutting (windowing) a fragment of length T. This can therefore be 

analytically represented as follows: 
 

 

( )
( )1

0

0,

0

x t dla t T
x t

dla t T

 
= 

 . (10) 
 

Finally, let signal x2(t) be a periodic signal created by a periodic repetition of signal 
x0(t) with period T. 

To better visualise the relations between signals x1(t), x0(t) and x2(t), they are 

illustrated in Fig. 1. 

 

 

Fig. 1. Visualization of relations between the signals x1(t), x0(t) and x2(t) 
Source: own study. 

Figure 1a shows a sample aperiodic signal; Figure 1b shows a fragment with 

length T, “cut” from that signal, while the signal shown in Fig. 1c can be referred 

to as the “periodic version” of signal x1(t). Fig. 1c shows that after time T, the main 
section of this signal (i.e. x0(t)) is cyclically repeated, and additionally it can be 

stated that x1(t) ≈ x2(t) = x2(t+T), when T is sufficiently long. 

Signal x2(t), as a periodic signal, is represented using a Fourier series, in this 

case in a complex form [Szabatin 2016] 
 

  

( ) 02

2

j nf t

n

n

x t c e




=−

= 
 , (11) 

 

where cn are coefficients of the complex Fourier series, calculated as follows: 
 

t 

x1(t) 

 

 

t 

x
2
(t) 

T 

 

 

a) b) 

 

 

t 

x
0
(t) 

T 

c) 

for 
 

for 
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 ( ) 0

2
2

2

2

1

T

j nf t

n

T

c x t e dt
T

−

−

=  ,  (12) 

 

where T is the period of the periodic signal x2(t), f0 is the frequency corresponding 

to this period, and n defines subsequent harmonic constituents. The following 
equation stems from the above: 

 

 0

1
f

T
=  . (13) 

 

Let us now present signal x2(t) in a different form, substituting (12) into (11): 
 

  ( ) ( ) 0 0

2
2 2

2 2

2

1

T

j nf t j nf t

n T

x t x t e dt e
T

 


−

=−
−

 
 

=  
 
 

   . (14) 

 

Signal x0(t), as it is not periodic, has no representation in the form of a Fourier 

series along the entire time line, but only for moments from a time window of 

duration T, where it is identical to signal x2(t): it can be represented there with 

a Fourier series for signal x2(t). 
Let us now imagine that signal x1(t) is really periodic, but its period T 

approaches infinity: T → ∞ (its repetition appears after an infinitely long time – 

this assumption has already been made in [Landman et al. 2008]). What happens 
when we assume that signal x2(t) becomes similar to x1(t), when T → ∞? Let us 

investigate what happens in this case, when T is sufficiently long, i.e. , where Td 

should be understood as the length of the window applied to signal x1(t), which 
forms signal x0(t), such that it encompasses 95% of the energy of signal x1(t). Let 

us create an auxiliary function (signal) B(t), which can be identified with any 

representative of signal x2(t), whose period fulfils the above conditions. We can 

write it as follows: 
 

  ( ) ( )2 dT TB t x t= , (15a) 

 

 As we will show later in this section, definition (15a) is also valid for the 

boundary case, i.e. for T → . In other words, function 
   

  ( ) ( )2 TB t x t →= , (15b) 

 

is defined correctly and does exist. 

T»Td 
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Note: The above statement leads to the conclusion that B(t) functions here in 

dual roles: as a family of functions with the property stated above, and as a single 

member of this family. In the deliberations below, we will only use it for 
representatives defined in equation (15b). 

Substituting (14) into (15b), we receive 
 

 

( ) ( ) 0 0

2
2 2

2

2

1

T

j nf t j nf t

n T

T

B t x t e dt e
T

 


−

=−
−

→

 
 

=  
 
 

 

. (16) 
 

 Note now that due to the above property of signal x1(t), which is a signal of 

finite energy, the mean signal energy x2(t) in period T decreases with increasing 
length of this period. Therefore, for all sufficiently high values of T, i.e. for T>>Td, 

one can state 
 

 ( ) ( )0 0

2 2
2 2

2 2

2 2

d

d

TT

j nf t j nf t

T T

x t e dt x t e dt
 − −

− −

  . (17) 

 

 Furthermore, since x2(t) is a periodic version of x1(t) since relations between 
signals x1(t), x0(t) and x2(t) are as defined above, the following relations are valid: 

 

  ( ) ( ) ( )0 0 0

2
2 2 2

2 0 1

2

T

j nf t j nf t j nf t

T

x t e dt x t e dt x t e dt
  

 

− − −

− −
−

     (18) 

 

for sufficiently high values of period T. 

To illustrate the effect of period T length on the accuracy achieved in equation 

(18), let us use Figure 2. 
 For a certain finite T, only a portion of signal x1(t) is repeated, limited by T. 

However, if we imagine T as infinitely long, it can be assumed that the “entirety” 

of signal x1(t) is repeated. The longer T is, the greater is the accuracy of the 
approximation x1(t) ≈ x2(t) along the entire time line within the section from 0 to T. 

On account of the above, by substituting (18) into (16), we obtain 
 

 

( ) ( ) 0 02 2

1

1 j nf t j nf t

n
T

B t x t e dt e
T

 


−

=− − →

 
=  

 
 

. (19) 
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Fig. 2. Impact of extending period T on the shape of function x2(t) and the accuracy  
of the approximations in (18) 

 
 

Furthermore, the longer T is, the more the fundamental frequency of the 

harmonics decreases, frequency spectral lines concentrate, and the distances 

between them approach zero: the spectrum transforms from discrete (f0n for 
n = 1,2,3…) into continuous (f domain, as in (9b)). Therefore, for sufficiently high 

T values, let us introduce a new variable in (19) to denote nf0: 
 

 0f n f→ . (20) 
 

Then (19) takes the form 
  

 

( ) ( ) 2 2

1

1 j ft j ft

n
T

B t x t e dt e
T

 


−

=− − →

 
=  

 
 

. (21) 
 

 Now, using the relation (9b) in (21), we can replace a section of equation (21) 

with a transform of signal x1(t): 
 

 

( ) ( ) 21 j nft

n T

B t X f e
T




=− →

= 
. (22) 

 

Let us note further that (13) means that if T → ∞, then f0 → 0, thus we can 

state: 

 
( ) 0 0 01 0f n f nf f = + − = →

 .  (23) 

This allows us to rewrite (22) as 
 

 ( ) ( ) 2

0

j ft

n f

B t X f e f


=−  →

=  . (24) 

 

t 

x2(t) 

T1 T
2
 t 

x
2
(t) 
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 Note now that the sum form in (24) contains the definition of Riemann 

integer. Using this fact and comparing (24) with (9a), we can state 
 

 

( ) ( )2

1( ) j ftB t X f e df x t



−

= =
. (25) 

 

We can therefore see that indeed, if T → ∞, then the signal spectrum obtained 

using a decomposition into a Fourier series becomes convergent on the spectrum 

obtained using the Fourier transform. 
The validity of the above derivations can be verified using the MATLAB 

environment. This was used to simulate an aperiodic signal x1(t): in this case, it was 

a signal comprising one triangular signal period, where the descending part of 
which lasted twice as long as the ascending part. The charts of this signal is shown 

in Fig. 3. 

This signal can be defined as follows: 
 

  ( )1

0

3
3

2 2

0 3

A
t dla t L

L

x t A A
t dla L t L

L

dla t L


 


= 

− +  





. (26) 

 
 

where A is signal amplitude (in this case A = 5), and L is duration of the triangular 

signal ascending slope (L = 5 s). 
 In the next step it was assumed that this signal would be repeated after time T. 

Coefficients An and Bn of the Fourier series of the periodic signal x2(t) created in 

this way were calculated, and on their basis a chart of the signal reconstructed from 
the k harmonics (k = 10 was assumed) was drawn. The reconstruction was 

performed for multiple T values, both for those for which only part of the original 

signal was repeated (Fig. 3b – 10 s, Fig. 3c – 12.5 s), and for those for which the 

entirety of the signal was processed (Fig. 3d – 15 s, Fig. 3e – 20 s). 
In analysing Figs. 3b-3, it can be observed that increasing T does indeed result 

in the reconstructed signal being increasingly similar to the original. In this case, 

only when all of the signal's energy is repeated (period T is at least equal to signal 
duration x1(t), i.e. 15 s), the reconstructed signal slopes are properly inclined and 

the signal takes values in the correct range from 0 to A (i.e. to 5). Additionally, 

signal repetition, absent from the original signal after all, occurs at increasingly 

later points. Fig. 3 graphically visualises the correctness of formula (25). 
  

for 
 

 

for 

 
for 
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Fig. 3. Effect of extending period T on the shape of function x2(t) in MATLAB: 
a) original signal; b) reconstructed signal, T = 10 s; c) reconstructed signal,  

T = 12.5 s; d) reconstructed signal, T = 15 s; e) reconstructed signal, T = 20 s 

 

Aperiodic triangular signal Reconstructed periodic signal, T=10 s 

   Reconstructed periodic signal, T=12.5 s Reconstructed periodic signal, T=15 s 

     Reconstructed periodic signal, T=20 s 
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4.  DERIVATION OF INPUT-OUTPUT RELATIONS FOR APERIODIC 
SIGNALS 

The deliberations in Section 3 prove that aperiodic signals can indeed be treated as 

periodic signals whose period approaches infinity. Section 2 demonstrated, on the 
other hand, that if a radio channel input signal is a periodic signal, the principle of 

superposition can be used to sum the component signals (which we have identified 

with Fourier series components) and consequently present the output signal of this 
channel in a generalised form (2). This section combines all the above reasoning, 

as aperiodic signals can (under certain conditions) be treated as periodic ones. We 

will attempt to decompose them into their component signals on the basis of  
a Fourier series (remembering the assumption concerning the period of such 

signals), and then, using the superposition principle, to sum the assumed 

constituents to obtain the output signal. 

As in Section 2, we also assume a signal, y(t), which is, in accordance with the 
superposition principle, a sum of individual signals y1(t), y2(t)… yn(t) originating 

from point sources generating sinusoidal signals (components of the Fourier 

series). This time, however, let us assume that the period of the individual 
sinusoidal signals approaches infinity, which means that the fundamental frequency 

is close to zero and therefore the difference Δf between individual harmonics 

(Δf = f2 - f1, etc.) is minimal as well. Therefore: 
 

 

1 1 1

2 1 1

3 2 2 2 1

4 2 2 2 1

0

( ) ( ) cos 2 ( ( ))

( ) ( ) sin 2 ( ( ))

( ) ( ) cos 2 ( ( )) ( ) cos 4 ( ( ))

( ) ( ) sin 2 ( ( )) ( ) sin 4 ( ( ))

...  ,

i i

i

i i

i

i i i i

i i

i i i i

i i

f

y t a t A f t t

y t a t B f t t

y t a t A f t t a t A f t t

y t a t B f t t a t B f t t

 

 

   

   

 →

= −

= −

= − = −

= − = −





 

 

 (27) 

 

where, as in Section 2, Ai and Bi, i = 1,2, ... , represent amplitudes of the 

corresponding sinusoidal constituents. 
By summing these we achieve, as in (5), a contraction into a Fourier series: 
 

 

( ) ( ) ( ) ( )

( )

1 2 3 4

1 1 01

( ) ...

( ) cos 2 ( ( )) sin 2 ( ( ))   .i n i n i fn
i

y t y t y t y t y t

a t A f n t t B f n t t   


 →=

= + + + + =

= − + − 
 (28) 
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The Fourier series presented in (28) is a trigonometric series. In the derivations in 

this section we would like to obtain a formula similar to (2), where any aperiodic 
signal would occur as x(t- τi(t)), such as in (9a). Since in (3) we used a Fourier 

series in a complex, non-trigonometric form, we also move to this form as well in 

these deliberations. By using Euler's equations, we can represent cosφ and sinφ as: 
 

 cos , sin
2 2

j j j je e e e

j

   

 
− −+ −

= = , (29) 

 

therefore, by substituting (29) into (28), and assuming that 
 

 12 ( ( ))if t t  = − , (30) 
 

we achieve: 
 

 

01

01

01 1

( ) ( )
2 2

( )
2 2 2 2

( )   .
2 2

jn jn jn jn

i n n fn
i

jn jnn n n n
i fn

i

jn jnn n n n
i fn n

i

e e e e
y t a t A B

j

A B A B
a t e e

j j

A jB A jB
a t e e

   

 

 

− −


 →=

 −

 →=

  −

 →= =

 + −
= + = 

 

    
= + + − =    

    

 − +    
= +    

    

 

 

  

 (31) 

 

Since according to [Szabatin 2016] the following relations exist: 
 

 
*;

2

n n
n n n

A jB
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and by assuming, as in Section 2, that A0 = 0 (i.e. c0 = 0), we achieve 
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The final section of the formula achieves the desired Fourier series in a complex 

form. 
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When discussing (20) it was explained that the concentration of spectral lines 

(i.e. Δf→ 0) is a result of T → ∞, which incidentally is one of the assumptions 

concerning component signals, mentioned at the beginning of this section. We can 
therefore replace the previous conditions 
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If we recall that according to (11), any periodic signal (x2(t)) can be defined as 
 

 ( ) ( )12 ( )

2 ( ) ij nf t t

i n

n

x t t c e
 




−

=−

− =  , (35) 

 

and furthermore in (25) and all of Section 3 we demonstrated that an aperiodic 

signal (x1(t)) can be treated as periodic under the condition that its period 

approaches infinity, i.e. 
 

  ( ) ( )1 2 T
x t x t

→
= ,  (36) 

 

then by substituting (35) and (36) into (34), we can finally state that

  

 ( ) ( )2 1( ) ( ) ( ) ( ) ( )i i T i i

i i

y t a t x t t a t x t t →= − = −  . (37) 

 

We have thus again obtained formula (2) as we intended, this time for 
aperiodic signals.

 

5.  SUMMARY 

The paper includes an analysis of the linear model of a radio channel with time-
dependent parameters, taking into account the multipath propagation phenomenon. 

The paper generalises the relation known in the literature, which connects input 

signals with the outputs for this type of channel. Previously its validity had only 

been demonstrated for the case when the input signal is a sinusoidal signal. It was 
shown in this paper that, by using the superposition principle and the relations 

between the Fourier series and transform, the relation discussed above is true for 

both periodic and aperiodic signals, and is therefore valid for any signal. 
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